首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peptide spanning residues 48-62 of hen egg white lysozyme presented by I-A(k) molecules gives rise to two T cell populations, types A and B, that recognize distinct conformers of the complex generated in late and recycling endosomes. The class II-like accessory molecule H2-DM functions as a conformational editor, eliminating the type B conformer in late endosomes. Here, we show that the conformation of the complex, and its susceptibility to editing by H2-DM, are determined by peptide amino-terminal flanking residues. Elimination of these residues abolished editing, permitting formation of the type B conformer in late endosomes. Substitutions at P(-2) affected the stability of the type B conformer, preventing its formation and/or editing, without hindering peptide binding or formation of the type A conformer of the complex. We conclude that interactions involving amino-terminal flanking residues stabilize peptide-MHC conformers and confer resistance to editing by H2-DM, influencing the nature of the T cell repertoire.  相似文献   

2.
In APCs, presentation by MHC II molecules of the chemically dominant peptide from the protein hen egg white lysozyme (HEL) generates different conformational isomers of the peptide-MHC II complexes (pMHC). Type B pMHCs are formed in early endosomes from exogenous peptides in the absence of H2-DM, whereas in contrast, type A pMHC complexes are formed from HEL protein in late vesicles after editing by H2-DM. Thus, H2-DM edits off the more unstable pMHC complexes, which are not presented from HEL. In this study, we show that type B pMHC complexes were presented from HEL protein only after stimulation of dendritic cells (DC) with TLR ligands or type I IFN. Type I IFN contributed to most TLR ligand-induced type B pMHC generation, as presentation decreased in DC lacking the receptor for type I IFNs (IFNAR1(-/-)). In contrast, presentation of type A pMHC from HEL and from peptide was minimally affected by TLR ligands. The relative effectiveness of CD8α(+) DC or CD8α(-) DC in presenting type B pMHC complexes varied depending on the TLR ligand used. The mechanisms of generation of type B pMHC from HEL protein with TLR stimulation did not involve H2-DM or release of peptides. DC from H2-DM-deficient mice in the presence of TLR ligands presented type B pMHC. Such DC showed a slight enhancement of HEL catabolism, but peptide release was not evident. Thus, TLR ligands and type I IFN alter the pathways of presentation by MHC II molecules of DC such that type B pMHCs are generated from protein Ag.  相似文献   

3.
C57BL/6 (B6) mice respond to immunization with acetylcholine receptor (AChR) from Torpedo californica as measured by T cell proliferation, antibody production, and the development of muscle weakness resembling human myasthenia gravis. The congenic strain B6.C-H-2bm12 (bm12), which differs from B6 by three amino acid substitutions in the beta-chain of the MHC class II molecule I-A, develops a T cell proliferative response but does not produce antibody or develop muscle weakness. By examining the fine specificity of the B6 and bm12 T cell responses to AChR by using T cell clones and synthetic AChR peptides, we found key differences between the two strains in T cell epitope recognition. B6 T cells responded predominantly to the peptide representing alpha-subunit residues 146-162; this response was cross-reactive at the clonal level to peptide 111-126. Based on the sequence homology between these peptides and the T cell response to a set of truncated peptides, the major B6 T cell epitope was determined to be residues 148-152. The cross-reactivity of peptides 146-162 and 111-126 could also be demonstrated in vivo. Immunization of B6 mice with either peptide primed for T cell responses to both peptides. In contrast, immunization of bm12 mice with peptide 111-126 primed for an anti-peptide response, which did not cross-react with 146-162. Peptide-reactive T cells were not elicited after immunization of bm12 mice with 146-162. These results define a major T cell fine specificity in experimental autoimmune myasthenia gravis-susceptible B6 mice to be directed at alpha-subunit residues 148-152. T cells from disease-resistant bm12 mice fail to recognize this epitope but do recognize other portions of AChR. We postulate that alpha-148-152 is a disease-related epitope in murine experimental autoimmune myasthenia gravis. In this informative strain combination, MHC class II-associated determinant selection, rather than Ag responsiveness per se, may play a major role in determining disease susceptibility.  相似文献   

4.
Type B T cells recognize peptide provided exogenously but are ignorant of the same epitope derived from intracellular processing. In this study, we demonstrate the existence of type B T cells to an abundant autologous peptide derived from processing of the I-A(k) beta-chain. T cell hybridomas raised against this peptide fail to recognize syngeneic APC despite abundant presentation of the naturally processed epitope but react in a dose-dependent manner to exogenous peptide. Moreover, these hybridomas respond to Abeta(k) peptide extracted from the surface of I-A(k)-expressing APC. This peptide was isolated from B cell lines where it was found in high abundance; it was also present in lines lacking HLA-DM, but in considerably lower amounts. Therefore, type B T cells exist in the naive repertoire to abundant autologous peptides. We discuss the implications of these findings to the potential biological role of type B T cells in immune responses and autoimmune pathology.  相似文献   

5.
Immunization with the hen egg-white lysozyme (HEL) protein induces T cells to various of its peptide determinants. The distribution of such T cells, however, does not correlate with the peptide level of each epitope on class II molecules. For this reason, we sought information on the cells responsible for Ag presentation following immunization, hoping to understand the lack of immunodominance in this system. By tracking HEL, and the ensuing peptide/MHC complexes, we find the following: 1) that HEL in the draining lymph node gets concentrated in a limited number of APC, particularly in dendritic cells and macrophages, 2) that these APC are functionally capable of presenting both major and minor determinants of HEL over a 100-fold range of Ag dose, and 3) that B cells present Ag gained at early times after immunization, but only following higher dose immunization. These data indicate that the breadth of a response is maintained over a wide dosage range by concentration of Ag in a limited number of cells presenting high levels and a great diversity of epitopes.  相似文献   

6.
Despite the tremendous plasticity of the TCR repertoire, T cells recognize a limited number of antigenic sites (frequently a single site, or immunodominant epitope) on a complex protein Ag. Current models suggest that the immunodominant epitope of a complex protein is the processed peptide that binds to the MHC molecule with the highest affinity. Conversely, the inability of the T cell population to recognize a specific epitope, termed a "hole" in the repertoire, can prevent the immunodominance of a peptide despite efficient processing and MHC binding of the peptide. The role of specific TCR alpha- or beta-chains in determining MHC restriction and recognizing specific epitopes is complex and incompletely understood. To evaluate the contribution of each TCR chain to the functional diversity of the T cell repertoire, we investigated in vivo the T cell response to phage lambda-repressor protein in transgenic mice expressing a single rearranged beta-chain gene (C57L beta mice) in association with the complete germline alpha-chain repertoire. Our results demonstrate that expression of the TCR beta-chain transgene alters the immunodominant epitope recognized by T cells. However, after immunization with the appropriate peptide the transgenic mice can also respond to the nonimmunodominant epitope; thus, the expression of the TCR beta-chain transgene does not create a hole in the repertoire. These data indicate that the primary site, or immunodominant epitope, of an Ag recognized by T cells can be altered by the preimmune TCR repertoire independent of antigen processing and MHC affinity.  相似文献   

7.
The hemagglutinin protein (HA) of the influenza virus family is a major antigen for protective immunity. Thus, it is a relevant target for developing vaccines. Here, we describe a human CD4(+) T cell epitope in the influenza virus HA that lies in the fusion peptide of the HA. This epitope is well conserved in all 16 subtypes of the HA protein of influenza A virus and the HA protein of influenza B virus. By stimulating peripheral blood mononuclear cells (PBMCs) from a healthy adult donor with peptides covering the entire HA protein based on the sequence of A/Japan/305/1957 (H2N2), we generated a T cell line specific to this epitope. This CD4(+) T cell line recognizes target cells infected with influenza A virus seasonal H1N1 and H3N2 strains, a reassortant H2N1 strain, the 2009 pandemic H1N1 strain, and influenza B virus in cytotoxicity assays and intracellular-cytokine-staining assays. It also lysed target cells infected with avian H5N1 virus. We screened healthy adult PBMCs for T cell responses specific to this epitope and found individuals who had ex vivo gamma interferon (IFN-γ) responses to the peptide epitope in enzyme-linked immunospot (ELISPOT) assays. Almost all donors who responded to the epitope had the HLA-DRB1*09 allele, a relatively common HLA allele. Although natural infection or standard vaccination may not induce strong T and B cell responses to this highly conserved epitope in the fusion peptide, it may be possible to develop a vaccination strategy to induce these CD4(+) T cells, which are cross-reactive to both influenza A and B viruses.  相似文献   

8.
We have previously shown that sc immunization of C57BL/10 (H-2b) mice with the tobacco mosaic virus protein (TMVP) or with its tryptic peptide number 8, representing residues 93-112 of TMVP, induces T cells which proliferate in vitro in response to TMVP and to peptide 8. In contrast, immunization of B10.BR (H-2k) mice either with TMVP or with peptide 8 induces T cells which respond in vitro to the homologous but not the heterologous Ag. In the present article , we report that in the B10.BR (H-2k) strain, ip prepriming with (TMVP) 7 days prior to sc immunization with peptide 8 causes a drastic reduction in the in vitro proliferative response of peptide 8-specific T cells while no such effect is seen in the congenic C57BL/10 (H-2b) strain. This suppression of T cell responsiveness can be transferred with TMVP-primed spleen cells. Moreover, deleting T cells from the transferred spleen cells abrogates the suppressive effect. In both H-2 haplotypes, ip prepriming with peptide 8 causes suppression of the proliferative T cell response induced by subsequent immunization with peptide 8. This prepriming has no effect on the response to TMVP immunization of B10.BR mice but does effect the response of C57BL/10 mice. Using various synthetic peptides to analyze the specificity of the suppression, we have determined that (1) T cells involved in the suppression of the proliferative T cell response to a single peptide determinant do not suppress the proliferative T cell response to other determinants on the protein antigen and (2) these T cells with suppressor function, and proliferating T cells which are ultimately regulated, can exhibit specificity for the same epitope. These studies suggest that there may exist fundamental differences as to how T cells which participate in suppression an proliferating T cells (which include mainly T helper cells) recognize protein antigens.  相似文献   

9.
Immunization with chemically defined synthetic polymers, multiple Ag peptide (MAP) systems, containing T and B epitopes of the circumsporozoite protein of P. berghei induce high levels of circulating antibodies that are detectable several months after boosting. The anti-MAP secondary antibody response is characterized by an increase in the levels of circulating IgG and a concomitant decrease in the IgM levels. In vitro and in vivo experiments indicated that Th epitopes included in the MAP are recognized by T cells induced after immunization with the native protein and, also, that MAP-induced T cells can recognize the native protein. In addition to high levels of anti-B epitope antibodies, MAP immunization also induces antibodies against the T epitope. This anti-T epitope immune response does not affect the generation of the anti-B epitope antibodies. Immunization of different strains of mice revealed that the antibody response is consistent with the genetically restricted pattern of recognition of the T epitope. There are, however, significant differences in the levels of antibody responses observed among responder strains. The findings of this study indicate that MAP are potent immunogens capable of inducing immunologic memory and are, thus, good candidates for the development of subunit vaccines designed to induce high levels of circulating antibodies.  相似文献   

10.
We have previously shown that immunization of C57BL/10 (H-2b) mice with the tobacco mosaic virus protein (TMVP) or with its tryptic peptide number 8, representing residues 93-112 of TMVP, induces T cells which proliferate in vitro in response to TMVP and peptide 8. In contrast, immunization of congenic B10.BR (H-2k) mice with either TMVP or with peptide 8 induces T cells which respond in vitro to the homologous but not the heterologous antigen. The capacity to exhibit cross-reactivity between TMVP and peptide 8 on the T cell level has been shown to be under major histocompatibility complex (MHC)-linked genetic control. The lack of cross-reactivity has been attributed to the inability of the H-2k APC to present the appropriate epitope to T cells. In the present paper, we report results of a comparative analysis of the role of structural aspects of the epitope on the proliferative T cell responses from TMVP and peptide 8-immune C57BL/10 (H-2b) and B10.BR (H-2k) mice. Utilizing a panel of synthetic peptides representing portions of peptide 8 and a panel of peptide-protein conjugates, we have determined that peptide 8-immune T cells of the H-2k strain appear to recognize a single epitope within peptide 8, located at its N-terminus. In contrast, in the H-2b strain, both TMVP and peptide 8-immune T cells appear to recognize two overlapping epitopes within peptide 8; one located in the middle region and the other toward the N-terminus. Experiments with H-2b T cells revealed that random amino acids added to the carboxyl or amino-terminus of nonstimulatory peptides can confer activity to these peptides, demonstrating limited specificity of interaction between antigen and Iab. Results of experiments dealing with fixation of antigen-presenting cells suggest that TMVP requires processing in order to be recognized by peptide 8-immune H-2b proliferative T cells whereas peptide 8 does not. Taken together the results suggest that the T cell responsiveness to TMVP and peptide 8 exhibited by these two congenic strains H-2b and H-2k is not only controlled by the strains MHC but is also influenced by antigen processing. Antigen processing may eliminate a potential epitope for the primary induction and the secondary stimulation of B10.BR T cells.  相似文献   

11.
The Ag processing and structural requirements involved in the generation of a major T cell epitope from the hen egg-white lysozyme protein (HEL74-88), containing two cysteine residues at positions 76 and 80, were investigated. Several T cell hybridomas derived from both low responder (I-Ab) and high responder (I-Ak) mice recognize this region. These hybridomas are strongly responsive to native HEL, but unresponsive to the reduced and carboxymethylated protein. Air-oxidized HEL74-88 peptide was unable to bind I-Ak molecules and failed to stimulate T cells in the absence of intracellular Ag processing. Further functional competition assays showed that alkylation of cysteine residues with bulky methyl groups interferes with the contacts for the MHC class II molecules (I-Ak) of high responder mice and the I-Ab-restricted TCR of low responder mice. Serine substitutions of the cysteine residues of HEL74-88 either enhanced or abrogated T cell stimulation by the peptides without significant alterations in the class II binding. These results suggest that the cysteine residues of peptides must be free from disulfide bonding for efficient stimulation of T cells and yet frequently used modifications of cysteine residues may not be suitable for peptide-based vaccine development.  相似文献   

12.
Transgenic (Tg) mice expressing a foreign Ag, hen egg lysozyme (HEL), under control of the alphaA-crystallin promoter ("HEL-Tg" mice) develop immunotolerance to HEL attributed to the expression of HEL in their thymus. In this paper we analyzed the immune response in double (Dbl)-Tg mice generated by mating the HEL-Tg mice with Tg mice that express HEL Abs on their B cells ("Ig-Tg" mice). The B cell compartment of the Dbl-Tg mice was unaffected by the HEL presence and was essentially identical to that of the Ig-Tg mice. A partial breakdown of tolerance was seen in the T cell response to HEL of the Dbl-Tg mice, i.e., their lymphocyte proliferative response against HEL was remarkably higher than that of the HEL-Tg mice. T-lymphocytes of both Dbl-Tg and Ig-Tg mice responded to HEL at concentrations drastically lower than those found stimulatory to lymphocytes of the wild-type controls. Cell mixing experiments demonstrated that 1) the lymphocyte response against low concentrations of HEL is due to the exceedingly efficient Ag presenting capacity of the Ab expressing B cells and 2) breakdown of tolerance in Dbl-Tg mice can also be attributed to the APC capacity of B cells, that sensitize in vivo and stimulate in vitro populations of T cells with low affinity toward HEL, assumed to be escapees of thymic deletion. These results thus indicate that T cell tolerance can be partially overcome by the highly potent Ag presenting capacity of Ab expressing B cells.  相似文献   

13.
Previous work established that binding of the 11-5.2 anti-I-A(k) mAb, which recognizes the Ia.2 epitope on I-A(k) class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-A(k) mAbs that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-A(k) molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2-bearing subset of I-A(k) class II molecules is critically necessary for effective B cell-T cell interactions, especially at low Ag doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-A(k) class II molecules possessing a β-chain-tethered hen egg lysosome peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2(-) tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous Ag to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II conformer vital to the initiation of MHC class II-restricted B cell-T cell interactions.  相似文献   

14.
The role of class II restriction in T cell recognition of an epitope of the autoantigen myelin basic protein (MBP) has been investigated. Encephalitogenic PL/J(H-2u) and (PL/J X SJL/J(H-2s))F1 ((PLSJ)F1) clones, isolated after immunization with intact MBP, recognize the N-terminal 11 amino acid residues of MBP in association with I-Au class II molecules. The synthetic peptide MBP 1-11 has been tested in vivo for induction of EAE. Clinical and histological EAE occurs in PL/J and (PLSJ)F1 mice but not SJL/J. The class II restriction of T cells primed with MBP 1-11 has been examined in primary cultures in vitro. Similar to encephalitogenic T cell clones, isolated after continuous selection in vitro, the population of MBP 1-11-specific proliferative PL/J and (PLSJ)F1 T cells, recognize this epitope in association with I-Au class II molecules. Not all MBP-specific T cell clones which are restricted to I-Au class II molecules cause autoimmune encephalomyelitis. The specificity of these non-encephalitogenic clones has been examined in this report. These clones also recognize MBP 1-11. Thus recognition of an encephalitogenic T cell epitope is not sufficient for induction of EAE.  相似文献   

15.
We have used bee venom phospholipase A2 as a vector to load human dendritic cells ex vivo with a major histocompatibility complex (MHC) class I-restricted epitope fused to its C-terminus. The fusion protein bound to human monocyte-derived dendritic cells and was internalized into early endosomes. In vitro immunization experiments showed that these dendritic cells were able to generate specific CD8 T cell lines against the epitope carried by the fusion protein. Cross-presentation did not require proteasome, transporter associated with antigen processing, or endosome proteases, but required newly synthesized MHC molecules. Comparison of the antigen presentation pathway observed in this study to that followed by other toxins used as vectors is discussed.  相似文献   

16.
B cells and dendritic cells (DC) internalize and degrade exogenous Ags and present them as peptides bound to MHC class II molecules for scrutiny by CD4(+) T cells. Here we use an Ab specific for a processed form of the model Ag, hen egg lysozyme (HEL), to demonstrate that this protein is not efficiently presented by lymph node DC following s.c. immunization. HEL presentation by the DC can be dramatically enhanced upon coinjection of a microbial adjuvant, which appears to act by enhancing peptide loading onto MHC class II. CD40 cross-linking or the presence of a high frequency of T cells specific for HEL can similarly improve presentation by DC in vivo. For any of these activating stimuli, CD8alpha(+) DC consistently display the highest proportion of HEL-loaded MHC class II molecules. These data indicate that exogenous Ags can be displayed to T cells in lymphoid tissues by a large cohort of resident DC whose presentation is regulated by innate and adaptive stimuli. Our data further reveal the existence of a feedback mechanism that augments Ag presentation during cognate APC-T cell interactions.  相似文献   

17.
Autoreactive T cells responding to systemic autoantigens have been characterized in patients and mice with autoimmune diseases and in healthy individuals. Using peptides covering the whole sequence of histone H4, we characterized several epitopes recognized by lymph node Th cells from nonsystemic lupus erythematosus-prone mice immunized with the same peptides, the H4 protein, or nucleosomes. Multiple T epitopes were identified after immunizing H-2d BALB/c mice with H4 peptides. They spanned residues 28-42, 30-47, 66-83, 72-89, and 85-102. Within the region 85-102, a minimal CD4+ T epitope containing residues 88-99 was characterized. Although Abs to peptide 88-99 recognized H4, this peptide does not contain a dominant B cell epitope recognized by anti-H4 Abs raised in BALB/c mice or Abs from NZB/NZW H-2d/z lupus mice. Th cells primed in vivo with H4 responded to H4, but not to peptide 88-99. However, this peptide was able to stimulate the proliferation and IL-2 secretion of Th cells generated after immunization with nucleosomes. H488-99 thus represents a cryptic epitope with regard to H4 and a supradominant epitope presented by nucleosome, a supramolecular complex that plays a key role in lupus. This study shows that in the normal repertoire of naive BALB/c mice, autoreactive Th cells specific for histones are not deleted. The reactivity of these Th cells seems to be relatively restricted and resembles that of Th clones generated from SNF1 ((SWR x NZB)F1; I-Ad/q) lupus mice described earlier.  相似文献   

18.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

19.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

20.
Influenza virus-specific CTL were primed in vivo by immunization with short synthetic peptides representing major CTL epitopes from the nucleoprotein of type A influenza virus. The resultant CTL after in vitro boosting of primed spleen cells recognized both virus-infected and peptide-pulsed target cells. The requirement of CD4+ T cell activation was investigated in several ways. First the addition of helper epitopes to the CTL epitope did not enhance CTL generation, suggesting that helper activity was either not limiting or not required. However, in vivo depletion of CD4+ T cells completely inhibited the generation of CTL by peptide immunization. The inclusion of anti-CD4 in the in vitro restimulation with peptide also prevented the generation of CTL, whereas in vitro reactivation of virus immune spleen cells with peptide was not inhibited by anti-CD4. Thus there appears to be heterogeneity in the requirement of CD4+ T cell proliferation in CTL generation. One possibility is that virus infected cells can stimulate higher affinity T cells that are less helper T cell dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号