首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The efflux of isoleucine in whole cells of Corynebacterium glutamicum was studied. The different amino acid fluxes across the plasma membrane were functionally discriminated into passive diffusion, carrier-mediated excretion, and carrier-mediated uptake. Detailed kinetic analysis was made possible by controlled variation of internal isoleucine from low concentrations to 100 mM by feeding with mixtures of isoleucine-containing peptides. Isoleucine diffusion was experimentally separated and proceeded with a first-order rate constant of 0.083 min-1 or 0.13 microliters.min-1.mg (dry mass)-1, which corresponds to a permeability of 2 x 10(-8) cm.s-1. Uptake of isoleucine was constant at a rate of 1.1 nmol.min-1.mg (dry mass)-1. Carrier-mediated isoleucine excretion was zero below a threshold of 8 mM cytosolic isoleucine. Above this level, a Michaelis-Menten-type kinetics was observed, with a Km of 21 mM (13 mM plus 8 mM threshold value) and a Vmax of 14.5 nmol.min-1.mg (dry mass)-1. The activity of the isoleucine excretion carrier depended on the presence of a membrane potential. Excretion was specific for L-isoleucine (and presumably L-leucine) and could be inhibited by SH reagents.  相似文献   

2.
Krolenko SA  Adamian SIa 《Tsitologiia》2000,42(12):1125-1133
The confocal fluorescence microscopy has been used for quantitative evaluation of the T-system reversible vacuoles produced by efflux of 80-120 mM glycerol from frog skeletal muscle fibers. The fibers were stained by membrane probe RH414 and by water-soluble dye fluorescein dextran that marks the vacuolar lumen. Using morphometrical and stereological methods the volume and surface densities of vacuoles were measured on single optical sections and Z-series during a 30 min glycerol efflux. Various methods of measurements (three-dimensional reconstruction of vacuoles, computer morphometry, point counting method) applied to the same Z-series provide similar results. The vacuolar membranes stained by RH414 look like bright rings 0.3-0.4 micron in width. It is concluded that the real position of vacuolar membrane corresponds to the middle of the vacuolar envelope. The measurements of the external dimensions of the envelope overestimate the stereological parameters up to 50%. The volume density of vacuoles reaches 10% within 20-30 min of glycerol efflux. It means that the volume of the T-system may increase by 25-30 times compared to the control value (0.3-0.4%). The surface density of vacuoles during reversible vacuolation is equal to 0.20-0.35 micron-1 and does not exceed the surface density of normal T-system. The sufficiency of membrane material for the T-system reversible vacuolation is discussed in addition to the role of geometrical factor in this phenomenon.  相似文献   

3.
AIMS: To isolate a strain overproducing riboflavin and to improve riboflavin production for practical use in a biorefinery technology. METHODS AND RESULTS: Ashbya gossypii spores were mutagenized by exposure to UV light and mutant ZP4 strain, producing riboflavin threefold the riboflavin that of the wild-type strain, was isolated by the first and second screenings. Proteomic analysis of ZP4 strain showed the expression patterns of eight types of genes related to riboflavin biosynthesis different from those of the wild-type strain and those enzyme activities were investigated. When activated bleaching earth (ABE) containing 75 g l(-1) rapeseed oil was added in the culture of the ZP4 strain with oxygen-enriched air supplied, riboflavin concentration increased to 8.7 g l(-1) at 5 days of culture. Riboflavin production yield was 0.17 g g(-1) of consumed oil, which was eightfold higher than that of the wild-type strain. CONCLUSIONS: The results show that the mutant ZP4 strain shows potential for improving riboflavin production for practical utilization using vegetable oil as the sole carbon source. SIGNIFICANCE AND IMPACT OF STUDY: Our results indicate that the mutant ZP4 strain shows potential for producing riboflavin from vegetable oil, and therefore will be contributed to biorefinery technology.  相似文献   

4.
Previous studies have shown that the deletion of brnQ from the Corynebacterium glutamicum chromosome results in a significant reduction in L-isoleucine uptake rates, while overexpression of brnFE leads to enhanced L-isoleucine export rates. Given that net excretion rates would be an important factor for high titers of L-isoleucine accumulation, we have tested the notion that decreased L-isoleucine uptake combined with increased L-isoleucine excretion will further improve high-yield strains that are currently used for the industrial-scale production of L-isoleucine. To examine the effect of the two carriers on L-isoleucine accumulation in L-isoleucine producer C. glutamicum YILW, we constructed a brnQ deletion mutant (C. glutamicum YILW?brnQ) and two brnFE overexpressors (C. glutamicum YILWpXMJ19brnFE and C. glutamicum YILW?brnQpXMJ19brnFE). Compared to the original strain, the efflux rate of the brnQ mutant increased from 19.0 to 23.6?nmol?min(-1) mg (dry wt)(-1) and its L-isoleucine titer increased from 154.3?mM (20.2?g?l(-1)) to 170.3?mM (22.3?g?l(-1)). The efflux rates of C. glutamicum YILWpXMJ19brnFE and C. glutamicum YILW?brnQpXMJ19brnFE were 33.5 and 39.1?nmol?min(-1) mg (dry wt)(-1), and their L-isoleucine production titers were 197.2?mM (25.9?g?l(-1)) and 221.0?mM (29.0?g?l(-1)), respectively. Our results suggest that modifications of the transport system could provide a promising avenue for further increasing L-isoleucine yield in the L-isoleucine producer.  相似文献   

5.
The vacuolar ATPase subunit A structural gene VMA1 of the biotechnologically important riboflavin overproducer Ashbya gossypii was cloned and disrupted to prevent riboflavin retention in the vacuolar compartment and to redirect the riboflavin flux into the medium. Cloning was achieved by polymerase chain reaction using oligonucleotide primers derived form conserved sequences of the Vma1 proteins from yeast and filamentous fungi. The deduced polypeptide comprises 617 amino acids with a calculated molecular mass of 67.8 kDa. The deduced amino acid sequence is highly similar to that of the catalytic subunits of Saccharomyces cerevisiae (67 kDa), Candida tropicalis (67 kDa), and Neurospora crassa (67 kDa) with 89, 87, and 60% identity, respectively, and shows about 25% identity to the beta-subunit of the FoF1-ATPase of S. cerevisiae and Schizosaccharomyces pombe. In contrast to S. cerevisiae, however, where disruption of the VMA1 gene was conditionally lethal, and to N. crassa, where viable disruptants could not be isolated, disruption of the VMA1 gene in A. gossypii did not cause a lethal phenotype. Disruption of the AgVMA1 gene led to complete excretion of riboflavin into the medium instead of retention in the vacuolar compartment, as observed in the wild type.  相似文献   

6.
Non-selective slow vacuolar (SV) channels mediate uptake of K+ and Na+ into vacuolar compartment. Under salt stress plant cells accumulate Na+ in the vacuole and release vacuolar K+ into the cytoplasm. It is, however, unclear how plants mediate transport of K+ from the vacuole without concomitant efflux of toxic Na+. Here we show by patch-clamp studies on isolated Arabidopsis thaliana cell culture vacuoles that SV channels do not mediate Na+ release from the vacuole as luminal Na+ blocks this channel. Gating of the SV channel is dependent on the K+ gradient across the vacuolar membrane. Under symmetrical K+ concentrations on both sides of the vacuolar membrane, SV channels mediate potassium uptake. When cytoplasmic K+ decreases, SV channels allow K+ release from the vacuole. In contrast to potassium, Na+ can be taken up by SV channels, but not released even in the presence of a 150-fold gradient (lumen to cytoplasm). Accumulation of Na+ in the vacuole shifts the activation potential of SV channels to more positive voltages and prevents gradient-driven efflux of K+. Similar to sodium, under physiological conditions, vacuolar Ca2+ is not released from vacuoles via SV channels. We suggest that a major Arabidopsis SV channel is equipped with a positively charged intrinsic gate located at the luminal side, which prevents release of Na+ and Ca2+, but permits efflux of K+. This property of the SV channel guarantees that K+ can shuttle across the vacuolar membrane while maintaining Na+ and Ca2+ stored in this organelle.  相似文献   

7.
The uptake and efflux of cyclic adenosine 3',5'-monophosphate (3',5'-cAMP) by Escherichia coli membrane vesicles were studied. Metabolic energy was not required for the uptake process and was found to actually decrease the amount of 3',5'-cAMP found in the vesicles. 3',5'-cAMP uptake exhibits saturation kinetics (Km = 10 mM, Vmax = 2.8 nmol/mg of protein per min) and was competitively inhibited by a number of 3',5'-cAMP analogs. The uptake of 3',5'-cAMP was found to be sharply affected by a membrane phase transition. The excretion of 3',5'-cAMP was studied by using everted membrane vesicles. Efflux in this system was dependent upon metabolic energy and was reduced or abolished by uncouplers. Different energy sources powered efflux at different rates, showing a relationship between the degree of membrane energization and rate of excretion of 3',5'-cAMP. The efflux process also displayed saturation kinetics (Km = 10.0 mM, Vmax = 0.98 nmol/mg of protein per min) and was competitively inhibited by the same 3',5'-cAMP analogs and to the same degree as was the uptake process. 3',5'-cAMP was found to be chemically unaltered by both the uptake and excretion processes. These data are interpreted as showing that the uptake and excretion of 3',5'-cAMP in E. coli membrane vesicles are carrier-mediated phenomena, possibly employing the same carrier system. Uptake is by facilitated diffusion whereas efflux is via an energy-dependent, active transport process. Evidence is presented showing that cells can regulate the number of 3',5'-cAMP transport carriers. The rate of 3',5'-cAMP excretion is possibly regulated by both the degree of membrane energization and the number of carriers present per cells.  相似文献   

8.
Corynebacterium glutamicum effectively excretes lysine when the internal lysine concentration is elevated. Lysine efflux was investigated using selected mutants which are not able to regulate lysine biosynthesis by feedback inhibition. Secretion of lysine is not the consequence of unspecific permeability of the plasma membrane but is mediated by a secretion carrier which is specific for lysine. Lysine export is characterized by high activation energy and follows Michaelis-Menten type kinetics with an internal Km of 20 mM and a Vmax of 12 nmol.min-1.mg dry cells-1. Excretion can proceed against a preexisting chemical gradient and against the electrical potential, which rules out a previously suggested pore model. Lysine excretion can also be observed in the wild-type strain especially under conditions of peptide uptake. Its possible physiological function may be related to regulation of internal amino acid concentrations under special growth conditions.  相似文献   

9.
Treatment ofNeurospora crassamycelia with cupric ion has been shown to permeabilize the plasma and mitochondrial membranes. Permeabilized mycelia were shown to take up arginine into the vacuoles. Uptake was ATP-independent and appeared to be driven by an existing K+-gradient. The kinetic characteristics of the observed uptake were similar to those observed using vacuolar membrane vesicles: theKmfor arginine uptake was found to be 4.2–4.5 mM. Permeabilized mycelia were used to study the regulation of arginine uptake into vacuoles. The results suggest that uptake is relatively indifferent to the contents of the vacuoles and is not affected by growth of mycelia in amino acid-supplemented medium. Efflux of arginine, lysine, and ornithine from vacuoles was also measured using mycelia permeabilized with cupric ion. Arginine release was shown to be specifically enhanced by cytosolic ornithine and/or increases in the vacuolar pool of arginine or ornithine. Lysine efflux was shown be indifferent to the presence of other amino acids. These observations emphasize the importance of vacuolar compartmentation in controlling arginine and ornithine metabolism and suggest that vacuolar compartmentation may play an important role in nitrogen homeostasis of filamentous fungi.  相似文献   

10.
The release of amino acids from their vacuolar store was studied in situ, i.e. in cells with selectively permeabilized plasma membrane and functionally intact vacuoles. As we previously described [Roos et al., J. Biol. Chem. 272 (1997) 15849-15855], this transport process is regulated by extravacuolar adenylates at their physiological concentrations. We now show, using our test object Penicillium cyclopium, that not only purine but also pyrimidine nucleotides are involved in the control of efflux of vacuolar phenylalanine. At 0.1 mM adenosine or guanosine phosphates inhibit, whereas cytidine or uridine phosphates stimulate the rate of efflux. At 1 mM the same nucleotides have no measurable impact on efflux but abolish the effects of other nucleotides present at 0.1 mM. This argues for at least two interacting binding sites with different nucleotide affinities. The minimum structural requirement for any of the observed effects is a non-cyclic ribonucleoside monophosphate. In intact cells, cytosolic concentrations of ATP (representing purine nucleotides) and CTP (representing pyrimidine nucleotides) are 1-2 mM and 0.05-0.2 mM, respectively. ATP is therefore assumed to dominate transport control and allow optimum efflux (and uptake) rates. Short-time starvation of carbon and nitrogen adjusts CTP and ATP at levels that cause declining efflux rates. During prolonged starvation both nucleotides fall below their transport-controlling concentrations and thus allow increasing rates of efflux from the still maintained vacuolar pool. Hence, efflux control under nutrient limitation includes an interplay of purine and pyrimidine nucleotides which precisely regulates the release of vacuolar amino acids and enables flexible adjustment to either amino acid saving or cell survival.  相似文献   

11.
Arabidopsis thaliana AtMTP1 belongs to the cation diffusion facilitator family and is localized on the vacuolar membrane. We investigated the enzymatic kinetics of AtMTP1 by a heterologous expression system in the yeast Saccharomyces cerevisiae, which lacked genes for vacuolar membrane zinc transporters ZRC1 and COT1. The yeast mutant expressing AtMTP1 heterologously was tolerant to 10 mm ZnCl(2). Active transport of zinc into vacuoles of living yeast cells expressing AtMTP1 was confirmed by the fluorescent zinc indicator FuraZin-1. Zinc transport was quantitatively analyzed by using vacuolar membrane vesicles prepared from AtMTP1-expressing yeast cells and radioisotope (65)Zn(2+). Active zinc uptake depended on a pH gradient generated by endogenous vacuolar H(+)-ATPase. The activity was inhibited by bafilomycin A(1), an inhibitor of the H(+)-ATPase. The K(m) for Zn(2+) and V(max) of AtMTP1 were determined to be 0.30 microm and 1.22 nmol/min/mg, respectively. We prepared a mutant AtMTP1 that lacked the major part (32 residues from 185 to 216) of a long histidine-rich hydrophilic loop in the central part of AtMTP1. Yeast cells expressing the mutant became hyperresistant to high concentrations of Zn(2+) and resistant to Co(2+). The K(m) and V(max) values were increased 2-11-fold. These results indicate that AtMTP1 functions as a Zn(2+)/H(+) antiporter in vacuoles and that a histidine-rich region is not essential for zinc transport. We propose that a histidine-rich loop functions as a buffering pocket of Zn(2+) and a sensor of the zinc level at the cytoplasmic surface. This loop may be involved in the maintenance of the level of cytoplasmic Zn(2+).  相似文献   

12.
Ashbya gossypii is a natural overproducer of riboflavin. Overproduction of riboflavin can be induced by environmental stress, e.g. nutritional or oxidative stress. The Yap-protein family has a well-documented role in stress response. Particularly, Yap1 has a major role in directing the oxidative stress responses. The A. gossypii YAP-family consists of only three genes in contrast to its closest relative Eremothecium cymbalariae, which has four YAP-homologs. Gene order at Eremothecium YAP-loci is conserved with the reconstructed yeast ancestor. AgYap1p is unique amongst Yap-homologs as it lacks the cysteine-rich domains (CRDs). AgYAP1 expression is inducible and GFP-AgYap1 localizes to the nucleus. Agyap1 mutants displayed higher sensitivity against oxidative stress - H(2)O(2) and menadione - and are strongly reduced in riboflavin production. High levels of cAMP, which also reduce riboflavin production, show a synergistic effect on this sensitivity. AgYAP1 and a chimera of AgYAP1 (with the DNA-binding domain) and ScYAP1 (with the CRDs) can both complement the Scyap1 oxidative stress sensitivity. This suggests that the DNA-binding sites of ScYap1 are conserved in A. gossypii. Expression of AgRIB4, which contains three putative Yap1-binding sites, assayed via a lacZ-reporter gene was strongly reduced in an Agyap1 mutant suggesting a direct involvement of AgYap1 in riboflavin production. Furthermore, our data show that application of H(2)O(2) stress leads to an increase in riboflavin production in a Yap1-dependent manner.  相似文献   

13.
P Askerlund 《Plant physiology》1997,114(3):999-1007
The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.  相似文献   

14.
A Ca2+-sensitive electrode was used to study net Ca2+-flux changes induced by the administration of phenylephrine, vasopressin and angiotensin to the perfused rat liver. The studies reveal that, although the Ca2+ responses induced by vasopressin and angiotensin are similar, they are quite different from the Ca2+ fluxes induced by phenylephrine. The administration of phenylephrine is accompanied by a stimulation of a net amount of Ca2+ efflux (140 nmol/g of liver). A re-uptake of a similar amount of Ca2+ occurs only after the hormone is removed. In contrast, the administration of vasopressin or angiotensin to livers perfused with 1.3 mM-Ca2+ induces the release of a relatively small amount of Ca2+ (approx. 40 nmol/g of liver) during the first 60 s. This is followed by a much larger amount of Ca2+ uptake (70-140 nmol/g of liver) after 1-2.5 min of hormone administration, and a slow efflux or loss of a similar amount of Ca2+ over a period of 6-8 min. At lower concentrations of perfusate Ca2+ (less than 600 microM) these hormones induce only a net efflux of the ion. These results suggest that at physiological concentrations of extracellular Ca2+ the mechanism by which alpha-adrenergic agonists mobilize cellular Ca2+ is different from that involving vasopressin and angiotensin. It seems that the hormones may have quite diverse effects on Ca2+ transport across the plasma membrane and perhaps organellar membranes in liver.  相似文献   

15.
Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.  相似文献   

16.
The intracellular creatine concentration is an important bioenergetic parameter in cardiac muscle. Although creatine uptake is known to be via a NaCl-dependent creatine transporter (CrT), its localization and regulation are poorly understood. We investigated CrT kinetics in isolated perfused hearts and, by using cardiomyocytes, measured CrT content at the plasma membrane or in total lysates. Rats were fed control diet or diet supplemented with creatine or the creatine analog beta-guanidinopropionic acid (beta-GPA). Creatine transport in control hearts followed saturation kinetics with a K(m) of 70 +/- 13 mM and a V(max) of 3.7 +/- 0.07 nmol x min(-1) x g wet wt(-1). Creatine supplementation significantly decreased the V(max) of the CrT (2.7 +/- 0.17 nmol x min(-1) x g wet wt(-1)). This was matched by an approximately 35% decrease in the plasma membrane CrT; the total CrT pool was unchanged. Rats fed beta-GPA exhibited a >80% decrease in tissue creatine and increase in beta-GPA(total). The V(max) of the CrT was increased (6.0 +/- 0.25 nmol x min(-1) x g wet wt(-1)) and the K(m) decreased (39.8 +/- 3.0 mM). The plasma membrane CrT increased about fivefold, whereas the total CrT pool remained unchanged. We conclude that, in heart, creatine transport is determined by the content of a plasma membrane isoform of the CrT but not by the total cellular CrT pool.  相似文献   

17.
Two different approaches to prepare and characterise vacuoles from the filamentous fungus Ashbya gossypii are described, i.e. the isolation of vacuoles from hyphal cells and the controlled permeabilisation of the plasma membrane. By mechanical lysis of protoplasts and separation of the organelles on a stepped density gradient, we obtained a vacuolar fraction virtually free of contamination by other organelles, unlysed protoplasts and cell debris. The integrity of the isolated organelles was characterised by vital-staining, the presence of α-mannosidase, and retained accumulation of basic amino acids. In a second approach, the cell membrane of the fungus was selectively permeabilised by use of the saponin digitonin leaving the vacuoles in their physiological surrounding, i.e. protected by the rigid cell wall. The permeabilisation was monitored by the latency of predominantly cytosolic amino acids and the ATP status of the cells. Functional intactness of the vacuoles within the permeabilised hyphae was demonstrated by maintenance of the pH gradient across the vacuolar membrane as detected by accumulation of the fluorescent dye, Acridine orange. These two methods are well-suited tools for the in situ assay of intracellular compartmentation of metabolites, for vacuolar transmembrane fluxes in Ashbya gossypii, as well as for the direct access to vacuolar membranes and enzymes of this fungus.  相似文献   

18.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

19.
Meira Weiss  Uri Pick 《Planta》1991,185(4):494-501
The fluorescent indicator atebrin (3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methyoxy-acridine) is taken up by Dunaliella salina cells at alkaline external pH and accumulates in acidic vacuoles. The uptake is unaffected by light, by photosynthetic inhibitors, by protonophores or by ionophores; however, the dye can be released by amines, indicating that it is specifically accumulating in acidic vacuoles. Amines induce a biphasic enhancement of atebrin fluorescence — a fast phase, accompanied by redistribution within the cell, consistent with release of the dye from the vacuoles to the cytoplasm, and a slow phase, correlated with release of atebrin from the cells. These results are interpreted to indicate a slow equilibration of atebrin across the plasma membrane and a fast equilibration across the vacuolar membrane. Part of the dye cannot be released by the amines, and appears to be internally bound. Atebrin uptake is inhibited by cholesteryl hemisuccinate and is stimulated by lysophosphatidylcholine, indicating that modification of the lipid composition of the plasma membrane affects the permeability to atebrin. Analysis of the pH dependence of atebrin uptake indicates that the dye enters the cells by fluid-phase permeation. Different stresses enhance the rate of atebrin uptake and release, indicating that they modify plasma-membrane structure or composition. Atebrin may serve as a specific marker for acidic vacuoles, as an indicator for amine uptake, and as a probe for subtle changes in the permeability of the plasma membrane.Abbreviations Atebrin 3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methoxy-acridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - SF-6847 3,5-ditertbutyl-4-hydroxybenzylidenemalonitrile  相似文献   

20.
Proline excretion from proline overproducing strains of E. coli K12 has been studied as a model chemical production system. We have isolated proline overproducing mutants of E. coli and have shown that uncontrolled synthesis is not sufficient to cause excretion of this amino acid. An episomal mutation causing proline over production has been introduced into a series of otherwise isogenic strains that bear well defined, chromosomal lesions affecting the active uptake and catabolism of L-proline. A syntropism test reveals that L-proline is excreted by overproducing strains only if transport and/or catabolism are impaired. Dansyl derivatization and chromatographic analysis of culture supernatants shows that proline is the only amino acid excreted. Batch cultures of an excreting strain in an amino acid production medium yield culture supernatants containing 1 g proline/L, whereas no proline is detectable in supernatants derived from cultures of an overproducing strain with normal transport and catabolic activities. These data reveal that genetic lesions eliminating active uptake can be used to specifically enhance metabolite excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号