首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore the thermodynamic basis for high affinity binding and specificity in conserved protein complexes using colicin endonuclease-immunity protein complexes as our model system. We investigated the ability of each colicin-specific immunity protein (Im2, Im7, Im8 and Im9) to bind the endonuclease (DNase) domains of colicins E2, E7 and E8 in vitro and compared these to the previously studied colicin E9. We find that high affinity binding (Kd < or = 10(-14) M) is a common feature of cognate colicin DNase-Im protein complexes as are non-cognate protein-protein associations, which are generally 10(6)-10(8)-fold weaker. Comparative alanine scanning of Im2 and Im9 residues involved in binding the E2 DNase revealed similar behaviour to that of the two proteins binding the E9 DNase; helix III forms a conserved binding energy hotspot with specificity residues from helix II only contributing favourably in a cognate interaction, a combination we have termed as "dual recognition". Significant differences are seen, however, in the number and side-chain chemistries of specificity sites that contribute to cognate binding. In Im2, Asp33 from helix II dominates colicin E2 specificity, whereas in Im9 several hydrophobic residues, including position 33 (leucine), help define its colicin specificity. A similar distribution of specificity sites was seen using phage display where, with Im2 as the template, a library of randomised sequences was generated in helix II and the library panned against either the E2 or E9 DNase. Position 33 was the dominant specificity site recovered in all E2 DNase-selected clones, whereas a number of Im9 specificity sites were recovered in E9 DNase-selected clones, including position 33. In order to probe the relationship between biological specificity and in vitro binding affinity we compared the degree of protection afforded to bacteria against colicin E9 toxicity by a set of immunity proteins whose affinities for the E9 DNase differed by up to ten orders of magnitude. This analysis indicated that the Kd required for complete biological protection is <10(-10)M and that the "affinity window" over which the selection of novel immunity protein specificities likely evolves is 10(-6)-10(-10)M. This comprehensive survey of colicin DNase-immunity protein complexes illustrates how high affinity protein-protein interactions can be very discriminating even though binding is dominated by a conserved hotspot, with single or multiple specificity sites modulating the overall binding free energy. We discuss these results in the context of other conserved protein complexes and suggest that they point to a generic specificity mechanism in divergently evolved protein-protein interactions.  相似文献   

2.
Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods.  相似文献   

3.
We explore the thermodynamic strategies used to achieve specific, high-affinity binding within a family of conserved protein-protein complexes. Protein-protein interactions are often stabilized by a conserved interfacial hotspot that serves as the anchor for the complex, with neighboring variable residues providing specificity. A key question for such complexes is the thermodynamic basis for specificity given the dominance of the hotspot. We address this question using, as our model, colicin endonuclease (DNase)-immunity (Im) protein complexes. In this system, cognate and noncognate complexes alike share the same mechanism of association and binding hotspot, but cognate complexes (K(d) approximately 10(-)(14) M) are orders of magnitude more stable than noncognate complexes (10(6)-10(10)-fold discrimination), largely because of a much slower rate of dissociation. Using isothermal titration calorimetry (ITC), we investigated the changes in enthalpy (DeltaH), entropy (-TDeltaS), and heat capacity (DeltaC(p)) accompanying binding of each Im protein (Im2, Im7, Im8, and Im9) to the DNase domains of colicins E2, E7, E8, and E9, in the context of both cognate and noncognate complexes. The data show that specific binding to the E2, E7, and E8 DNases is enthalpically driven but entropically driven for the E9 DNase. Analysis of DeltaC(p), a measure of the change in structural fluctuation upon complexation, indicates that E2, E7, and E8 DNase specificity is coupled to structural changes within cognate complexes that are consistent with a reduction in the conformational dynamics of these complexes. In contrast, E9 DNase specificity appears coupled to the exclusion of water molecules, consistent with the nonpolar nature of the interface of this complex. The work highlights that although protein-protein interactions may be centered on conserved structural epitopes the thermodynamic mechanism underpinning binding specificity can vary considerably.  相似文献   

4.
Chen G  Wen JD  Tinoco I 《RNA (New York, N.Y.)》2007,13(12):2175-2188
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.  相似文献   

5.
Bacteria producing endonuclease colicins are protected against their cytotoxic activity by virtue of a small immunity protein that binds with high affinity and specificity to inactivate the endonuclease. DNase binding by the immunity protein occurs through a "dual recognition" mechanism in which conserved residues from helix III act as the binding-site anchor, while variable residues from helix II define specificity. We now report the 1.7 A crystal structure of the 24.5 kDa complex formed between the endonuclease domain of colicin E9 and its cognate immunity protein Im9, which provides a molecular rationale for this mechanism. Conserved residues of Im9 form a binding-energy hotspot through a combination of backbone hydrogen bonds to the endonuclease, many via buried solvent molecules, and hydrophobic interactions at the core of the interface, while the specificity-determining residues interact with corresponding specificity side-chains on the enzyme. Comparison between the present structure and that reported recently for the colicin E7 endonuclease domain in complex with Im7 highlights how specificity is achieved by very different interactions in the two complexes, predominantly hydrophobic in nature in the E9-Im9 complex but charged in the E7-Im7 complex. A key feature of both complexes is the contact between a conserved tyrosine residue from the immunity proteins (Im9 Tyr54) with a specificity residue on the endonuclease directing it toward the specificity sites of the immunity protein. Remarkably, this tyrosine residue and its neighbour (Im9 Tyr55) are the pivots of a 19 degrees rigid-body rotation that relates the positions of Im7 and Im9 in the two complexes. This rotation does not affect conserved immunity protein interactions with the endonuclease but results in different regions of the specificity helix being presented to the enzyme.  相似文献   

6.
Walker D  Moore GR  James R  Kleanthous C 《Biochemistry》2003,42(14):4161-4171
Colicin E3 is a 60 kDa, multidomain protein antibiotic that targets its ribonuclease activity to an essential region of the 16S ribosomal RNA of Escherichia coli. To prevent suicide of the producing cell, synthesis of the toxin is accompanied by the production of a 10 kDa immunity protein (Im3) that binds strongly to the toxin and abolishes its enzymatic activity. In the present work, we study the interaction of Im3 with the isolated cytotoxic domain (E3 rRNase) and intact colicin E3 through presteady-state kinetics and thermodynamic measurements. The isolated E3 rRNase domain forms a high affinity complex with Im3 (K(d) = 10(-12) M, in 200 mM NaCl at pH 7.0 and 25 degrees C). The interaction of Im3 with full-length colicin E3 under the same conditions is however significantly stronger (K(d) = 10(-14) M). The difference in affinity arises almost wholly from a marked decrease in the dissociation rate constant for the full-length complex (8 x 10(-7) s(-1)) relative to the E3 rRNase-Im3 complex (1 x 10(-4) s(-1)), with their association rates comparable ( approximately 10(8) M(-1) s(-1)). Thermodynamic measurements show that complex formation is largely enthalpy driven. In light of the recently published crystal structure of the colicin E3-Im3 complex, the additional stabilization of the wild-type complex can be ascribed to the interaction of Im3 with the N-terminal translocation domain of the toxin. These observations suggest a mechanism whereby dissociation of the immunity protein prior to translocation into the target cell is facilitated by the loss of the Im3-translocation domain interaction.  相似文献   

7.
Knowledge about the conformational dynamics of a protein is key to understanding its biochemical and biophysical properties. In the present work we investigated the dynamic properties of the enzymatic domain of DNase colicins via time-resolved fluorescence and anisotropy decay analysis in combination with steady-state acrylamide quenching experiments. The dynamic properties of the apoenzyme were compared to those of the E9 DNase ligated to the transition metal ion Zn(2+) and the natural inhibitor Im9. We further investigated the contributions of each of the two tryptophans within the E9 DNase (Trp22 and Trp58) using two single-tryptophan mutants (E9 W22F and E9 W58F). Wild-type E9 DNase, E9 W22F, and E9 W58F, as well as Im9, showed multiple lifetime decays. The time-resolved and steady-state fluorescence results indicated that complexation of E9 DNase with Zn(2+) induces compaction of the E9 DNase structure, accompanied by immobilization of Trp22 along with a reduced solvent accessibility for both tryptophans. Im9 binding resulted in immobilization of Trp22 along with a decrease in the longest lifetime component. In contrast, Trp58 experienced less restriction on complexation of E9 DNase with Im9 and showed an increase in the longest lifetime component. Furthermore, the results point out that the Im9-induced changes in the conformational dynamics of E9 DNase are predominant and occur independently of the Zn(2+)-induced conformational effects.  相似文献   

8.
Colicin endonucleases (DNases) are bound and inactivated by immunity (Im) proteins. Im proteins are broadly cross-reactive yet specific inhibitors binding cognate and non-cognate DNases with Kd values that vary between 10− 4 and 10− 14 M, characteristics that are explained by a ‘dual-recognition’ mechanism. In this work, we addressed for the first time the energetics of Im protein recognition by colicin DNases through a combination of E9 DNase alanine scanning and double-mutant cycles (DMCs) coupled with kinetic and calorimetric analyses of cognate Im9 and non-cognate Im2 binding, as well as computational analysis of alanine scanning and DMC data. We show that differential ΔΔGs observed for four E9 DNase residues cumulatively distinguish cognate Im9 association from non-cognate Im2 association. E9 DNase Phe86 is the primary specificity hotspot residue in the centre of the interface, which is coordinated by conserved and variable hotspot residues of the cognate Im protein. Experimental DMC analysis reveals that only modest coupling energies to Im9 residues are observed, in agreement with calculated DMCs using the program ROSETTA and consistent with the largely hydrophobic nature of E9 DNase-Im9 specificity contacts. Computed values for the 12 E9 DNase alanine mutants showed reasonable agreement with experimental ΔΔG data, particularly for interactions not mediated by interfacial water molecules. ΔΔG predictions for residues that contact buried water molecules calculated using solvated rotamer models met with mixed success; however, we were able to predict with a high degree of accuracy the location and energetic contribution of one such contact. Our study highlights how colicin DNases are able to utilise both conserved and variable amino acids to distinguish cognate from non-cognate Im proteins, with the energetic contributions of the conserved residues modulated by neighbouring specificity sites.  相似文献   

9.
Proteoglycan aggregate is a major component of the extracellular matrix in articular cartilage and is considered to be responsible for the resistance to compression of this tissue. The reduced stiffness of articular cartilage due to the loss of proteoglycan aggregate has been reported in osteoarthritis. In order to understand the mechanical properties of extracellular matrix in articular cartilage at molecular level, the compressive properties of 36 single molecules of proteoglycan aggregate were directly measured using a laser tweezers/interferometer system. The proteoglycan aggregates showed resistance when compressed to approximately 30% of their contour length. The stiffness of proteoglycan aggregates increased non-linearly from 2.6+/-3.8 pN/microm (compressed to 30-35% of their contour length) to 115.5+/-30.9 pN/microm (compressed to 2.5-5% of their contour length).  相似文献   

10.
We report the overproduction of the immunity protein for the DNase colicin E9 and its characterization both in vivo and in vitro. The genes for colicin immunity proteins are normally co-expressed from Col plasmids with their corresponding colicins. In the context of the enzymatic colicins, the two proteins form a complex, thereby protecting the host bacterium from the antibiotic activity of the colicin. This complex is then released into the medium, whereupon the colicin alone translocates (through the appropriate receptor) into sensitive bacterial strains, resulting in bacterial cell death. The immunity protein for colicin E9 (Im9) has been overproduced in a bacterial host in the absence of its colicin, to enable sufficient material to be isolated for structural studies. As a prelude to such studies, the in-vivo and in-vitro properties of overproduced Im9 were analysed. Electrospray mass spectrometry verified the molecular mass of the purified protein and analytical ultracentrifugation indicated that the native protein approximates a symmetric monomer. Fluorescence-enhancement and gel-filtration experiments show that purified Im9 binds to colicin E9 in a 1:1 molar ratio and that this binding neutralizes the DNase activity of the colicin. These results lay the foundations for a full biophysical and structural characterization of the colicin E9 DNase inhibitor protein, Im9.  相似文献   

11.
To address the role of sequence in the folding of homologous proteins, the folding and unfolding kinetics of the all-helical bacterial immunity proteins Im2 and Im9 were characterised, together with six chimeric derivatives of these proteins. We show that both Im2 and Im9 fold rapidly (k(UN)(H(2)O)) approximately 2000 s(-1) at pH 7.0, 25 degrees C) in apparent two-state transitions, through rate-limiting transition states that are highly compact (beta(TS)0.93 and 0.96, respectively). Whilst the folding and unfolding properties of three of the chimeras (Im2 (1-44)(Im9), Im2 (1-64)(Im9 )and Im2 (25-44)(Im9)) are similar to their parental counterparts, in other chimeric proteins the introduced sequence variation results in altered kinetic behaviour. At low urea concentrations, Im2 (1-29)(Im9) and Im2 (56-64)(Im9) fold in two-state transitions via transition states that are significantly less compact (beta(TS) approximately 0.7) than those characterised for the other immunity proteins presented here. At higher urea concentrations, however, the rate-limiting transition state for these two chimeras switches or moves to a more compact species (beta(TS) approximately 0.9). Surprisingly, Im2 (30-64)(Im9) populates a highly collapsed species (beta(I)=0.87) in the dead-time (2.5 ms) of stopped flow measurements. These data indicate that whilst topology may place significant constraints on the folding process, specific inter-residue interactions, revealed here through multiple sequence changes, can modulate the ruggedness of the folding energy landscape.  相似文献   

12.
We report the first stopped-flow fluorescence analysis of transition metal binding (Co(2+), Ni(2+), Cu(2+), and Zn(2+)) to the H-N-H endonuclease motif within colicin E9 (the E9 DNase). The H-N-H consensus forms the active site core of a number of endonuclease groups but is also structurally homologous to the so-called treble-clef motif, a ubiquitous zinc-binding motif found in a wide variety of metalloproteins. We find that all the transition metal ions tested bind via multistep mechanisms. Binding was further dissected for Ni(2+) and Zn(2+) ions through the use of E9 DNase single tryptophan mutants, which demonstrated that most steps reflect conformational rearrangements that occur after the bimolecular collision, many common to the two metals, while one appears specific to zinc. The kinetically derived equilibrium dissociation constants (K(d)) for transition metal binding to the E9 DNase agree with previously determined equilibrium measurements and so confirm the validity of the derived kinetic mechanisms. Zn(2+) binds tightest to the enzyme (K(d) approximately 10(-)(9) M) but does not support endonuclease activity, whereas the other metals (K(d) approximately 10(-)(6) M) are active in endonuclease assays implying that the additional step seen for Zn(2+) traps the enzyme in an inactive but high affinity state. Metal-induced conformational changes are likely to be a conserved feature of H-N-H/treble clef motif proteins since similar Zn(2+)-induced, multistep binding was observed for other colicin DNases. Moreover, they appear to be independent both of the conformational heterogeneity that is naturally present within the E9 DNase at equilibrium, as well as the conformational changes that accompany the binding of its cognate inhibitor protein Im9.  相似文献   

13.
The analysis of RecA protein playing a central role in homologous recombination of E. coli with single-stranded DNAs of various structure and length on quantitative level is carried out for the first time. It was shown that weak additive interactions between protein monomers of filament and different structural elements of DNA provide DNA recognition. Orthophosphate and dNMPs (I50 = 12-20 mM) were shown to be the minimal inhibitors of RecA filamentation on d(pN)20. The lengthening of homooligonucleotides from d(pN)2 to d(pN)20 by one unit leads to monotonic increase in the affinity by a factor approximately 2 (factor f) due to weak additive contacts of RecA with every internucleoside phosphate group of DNA (f = 1.56) and specific interactions with each of T and C bases (f = 1.32). RecA filament does not practically interact with bases of d(pA)n, but contacts with internucleoside phosphate groups of the first turn (n < 10; f = 2.1) more effective than with additional turns of d(pA)n (n > 10; f = 1.3). The affinity of RecA protein for d(pN)n, containing typical and a number of different modified bases depends on a type of base, peculiarities of DNA structure and conformation of its sugar-phosphate backbone. The affinity is increased significantly if the bases contain exocyclic proton accepting groups. The possible reasons of preferable complexation of RecA with DNA of definite structure and length are analyzed. The mechanism of single-stranded DNA recognition by RecA and hypothetical mechanism of homological DNA strands exchange are proposed.  相似文献   

14.
The binding change model for the F(1)-ATPase predicts that its rotation is intimately correlated with the changes in the affinities of the three catalytic sites for nucleotides. If so, subtle differences in the nucleotide structure may have pronounced effects on rotation. Here we show by single-molecule imaging that purine nucleotides ATP, GTP, and ITP support rotation but pyrimidine nucleotides UTP and CTP do not, suggesting that the extra ring in purine is indispensable for proper operation of this molecular motor. Although the three purine nucleotides were bound to the enzyme at different rates, all showed similar rotational characteristics: counterclockwise rotation, 120 degrees steps each driven by hydrolysis of one nucleotide molecule, occasional back steps, rotary torque of approximately 40 piconewtons (pN).nm, and mechanical work done in a step of approximately 80 pN.nm. These latter characteristics are likely to be determined by the rotational mechanism built in the protein structure, which purine nucleotides can energize. With ATP and GTP, rotation was observed even when the free energy of hydrolysis was -80 pN.nm/molecule, indicating approximately 100% efficiency. Reconstituted F(o)F(1)-ATPase actively translocated protons by hydrolyzing ATP, GTP, and ITP, but CTP and UTP were not even hydrolyzed. Isolated F(1) very slowly hydrolyzed UTP (but not CTP), suggesting possible uncoupling from rotation.  相似文献   

15.
Measurements of forces in the piconewton range are very important for the study of molecular adhesion and mechanics. Recently, a micropipet-based force transducer for this type of experiment was presented (E. Evans, K. Ritchie, and R. Merkel, 1995, Biophys. J., 68:2580-2587). In the present article we give a detailed mechanical analysis of this transducer, including nonlinear effects. An analytical expression for the transducer stiffness at small elongations is given. Using magnetic tweezers (F. Ziemann, J. Rädler, and E. Sackmann, 1994, Biophys. J., 66:2210-2216), we were able to determine the force displacement relation of this transducer experimentally. Forces from approximately 10 pN to 500 pN were applied. Theoretical predictions and experimental results coincide remarkably well.  相似文献   

16.
The first step in the encounter between a host and a pathogen is attachment to the host epithelium. For uropathogenic Escherichia coli, these interactions are mediated by type 1 and P adhesive pili, which are long (approximately 1 microm) rods composed of more than 1000 protein subunits arranged in a helical structure. Here we used single-molecule atomic force microscopy to study the mechanical properties of type 1 pili. We found that type 1 pili readily extend under an applied force and that this extensibility is the result of unwinding the pilus rod's helical quaternary structure. The forced unraveling is also reversible, with helical rewinding taking place under considerable forces (approximately 60 pN). These data are similar to those obtained on P pili using optical tweezers, indicating that these are conserved properties of uropathogenic E. coli pili. We also show that our data can readily be reproduced using Monte Carlo simulation techniques based on a two-state kinetic model. This model provides a simple way to extrapolate the mechanical behavior of pili under a wide range of forces. We propose that type 1 pilus unraveling is an essential mechanism for absorbing physiological shear forces encountered during urinary tract infections and probably essential for adhesion and colonization of the bladder epithelium.  相似文献   

17.
The mechanical behavior of individual P pili of uropathogenic Escherichia coli has been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of approximately 10(3) PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. They are particularly important in the pathogenesis of E. coli colonizing the upper urinary tract and kidneys. A biological model system has been established for in situ measurements of the forces that occur during mechanical stretching of pili. A mathematical model of the force-versus-elongation behavior of an individual pilus has been developed. Three elongation regions of pili were identified. In region I, P pili stretch elastically, up to a relative elongation of 16 +/- 3%. The product of elasticity modulus and area of a P pilus, EA, was assessed to 154 +/- 20 pN (n=6). In region II, the quaternary structure of the PapA rod unfolds under a constant force of 27 +/- 2 pN (n approximately 100) by a sequential breaking of the interactions between adjacent layers of PapA subunits. This unfolding can elongate the pilus up to 7 +/- 2 times. In region III, pili elongate in a nonlinear manner as a result of stretching until the bond ruptures.  相似文献   

18.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   

19.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

20.
Actin polymerization is the driving force for a large number of cellular processes. Formation of lamellipodia and filopodia at the leading edge of motile cells requires actin polymerization induced mechanical deformation of the plasma membrane. To generate different types of membrane protrusions, the mechanical properties of actin filaments can be constrained by interacting proteins. A striking example of such constraint is the buckling of actin filaments generated in vitro by the cooperative effect of a processive actin nucleating factor (formin) and a molecular motor (myosin II). We developed a physical model based on equations for an elastic rod that accounts for actin filament buckling. Both ends of the rod were maintained in a fixed position in space and we considered three sets of boundary conditions. The model qualitatively and quantitatively reproduces the shape distribution of actin filaments. We found that actin polymerization counterpoises a force in the range 0.4-1.6 pN for moderate end-to-end distance (approximately 1 microm) and could be as large as 10 pN for shorter distances. If the actin rod attachment includes a spring, we discovered that the stiffness must be in the range 0.1-1.2 pN/nm to account for the observed buckling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号