首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glutamate-activated current in photoreceptors has been attributed both to a sodium/glutamate transporter and to a glutamate-activated chloride channel. We have further studied the glutamate-activated current in single, isolated photoreceptors from the tiger salamander using noise analysis on whole-cell patch-clamp recordings. In cones, the current is generated by chloride channels with a single-channel conductance of 0.7 pS and an open lifetime of 2.4 ms. The number of channels per cell is in the range of 10,000-20,000. Activation of the channels requires the presence of both glutamate and sodium. The single-channel conductance and the open lifetime of the channel are independent of the external concentration of glutamate and sodium. External glutamate and sodium affect only the opening rate of the channels. D,L-Threo-3-hydroxyaspartate (THA), a glutamate-transport blocker, is shown to be a partial agonist for the channel. The single-channel conductance is the same regardless of whether glutamate or THA is the ligand, but the open lifetime of the channel is only 0.8 ms with THA as ligand. The glutamate-activated current in rods has a similar single-channel conductance (0.74 pS) and open lifetime (3 ms). We propose a kinetic model, consistent with these results, to explain how a transporter can simultaneously act both as a sodium/glutamate-gated chloride channel and a glutamate/sodium cotransporter.  相似文献   

2.
Veratridine modifies open sodium channels   总被引:11,自引:4,他引:7       下载免费PDF全文
The state dependence of Na channel modification by the alkaloid neurotoxin veratridine was investigated with single-channel and whole-cell voltage-clamp recording in neuroblastoma cells. Several tests of whole-cell Na current behavior in the presence of veratridine supported the hypothesis that Na channels must be open in order to undergo modification by the neurotoxin. Modification was use dependent and required depolarizing pulses, the voltage dependence of production of modified channels was similar to that of normal current activation, and prepulses that caused inactivation of normal current had a parallel effect on the generation of modified current. This hypothesis was then examined directly at the single-channel level. Modified channel openings were easily distinguished from normal openings by their smaller current amplitude and longer burst times. The modification event was often seen as a sudden, dramatic reduction of current through an open Na channel and produced a somewhat flickery channel event having a mean lifetime of 1.6 s at an estimated absolute membrane potential of -45 mV (23 degrees C). The modified channel had a slope conductance of 4 pS, which was 20-25% the size of the slope conductance of normal channels with the 300 mM NaCl pipette solution used. Most modified channel openings were initiated by depolarizing pulses, began within the first 10 ms of the depolarizing step, and were closely associated with the prior opening of single normal Na channels, which supports the hypothesis that modification occurs from the normal open state.  相似文献   

3.
To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90:375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94:813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized: (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained: unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 252:8669-8676).  相似文献   

4.
Mutations in genes encoding neuronal voltage-gated sodium channel subunits have been linked to inherited forms of epilepsy. The majority of mutations (>100) associated with generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI) occur in SCN1A encoding the NaV1.1 neuronal sodium channel alpha-subunit. Previous studies demonstrated functional heterogeneity among mutant SCN1A channels, revealing a complex relationship between clinical and biophysical phenotypes. To further understand the mechanisms responsible for mutant SCN1A behavior, we performed a comprehensive analysis of the single-channel properties of heterologously expressed recombinant WT-SCN1A channels. Based on these data, we then determined the mechanisms for dysfunction of two GEFS+-associated mutations (R1648H, R1657C) both affecting the S4 segment of domain 4. WT-SCN1A has a slope conductance (17 pS) similar to channels found in native mammalian neurons. The mean open time is approximately 0.3 ms in the -30 to -10 mV range. The R1648H mutant, previously shown to display persistent sodium current in whole-cell recordings, exhibited similar slope conductance but had an increased probability of late reopening and a subfraction of channels with prolonged open times. We did not observe bursting behavior and found no evidence for a gating mode shift to explain the increased persistent current caused by R1648H. Cells expressing R1657C exhibited conductance, open probability, mean open time, and latency to first opening similar to WT channels but reduced whole-cell current density, suggesting decreased number of functional channels at the plasma membrane. In summary, our findings define single-channel properties for WT-SCN1A, detail the functional phenotypes for two human epilepsy-associated sodium channel mutants, and clarify the mechanism for increased persistent sodium current induced by the R1648H allele.  相似文献   

5.
Summary Two different3H-saxitoxin-binding proteins, with distinct biochemical and functional properties, were isolated from rat brain using a combination of anion exchange and lectin affinity chromatography as well as high resolution size exclusion and anion exchange HPLC. The alpha subunits of the binding proteins had different apparent molecular weights on SDS-PAGE (Type A: 235,000; Type B: 260,000). When reconstituted into planar lipid bilayers, the two saxitoxin-binding proteins formed sodium channels with different apparent single-channel conductances in the presence of batrachotoxin (Type A: 22 pS; Type B: 12 pS) and veratridine (Type A: 9 pS; Type B: 5 pS). The subtypes were further distinguished by scorpion (Leiurus quinquestriatus) venom which had different effects on single-channel conductance and gating of veratridine-activated Type A and Type B channels. Scorpion venom caused a 19% increase in single-channel conductance of Type A channels and a 35-mV hyperpolarizing shift in activation. Scropion venom double the single-channel conductance of Type B channels and shifted activation by at least 85 mV.  相似文献   

6.
A 34-mer peptide, encompassing the S4 and S45 segments of domain IV of the electric eel voltage-dependent sodium channel, was synthesized in order to test the potential implication of S45 in the gating or permeation pathway. The secondary structure of peptide S4–S45 assessed by circular dichroism was found mainly helical, both in organic solvents and in lipid vesicles, especially negatively-charged ones. The macroscopic conductance properties of neutral and negatively-charged Montal-Mueller planar lipid bilayers doped with S4–S45 were studied and compared with those of S4. With regard to voltage-dependence, the most efficient system was S4–S45 in neutral bilayers. Voltage thresholds for exponential conductance development were found to correlate with the background or leak conductance. Assuming that the latter reflects interfacial peptide concentration, the mean apparent number of monomers per conducting aggregate could be estimated to be 3–5. In single-channel experiments, the most probable events had amplitudes of 8 pS and 5 pS in neutral and negatively-charged bilayers respectively. Ionic selectivity under salt gradients conditions, both at macroscopic and single-channel levels, was in favour of sodium ions (PNa/PK = 3). These properties compare favourably to previous reports dealing with peptide modelling transmembrane segments of voltage-dependent ionic channels. Specifically, when compared to S4 alone, the reduced unit conductance and the increased selectivity for sodium support the implication of the S45 region in the inner lining of the open configuration of sodium channels. Correspondence to: H. Duclohier  相似文献   

7.
Squid optic nerve sodium channels were characterized in planar bilayers in the presence of batrachotoxin (BTX). The channel exhibits a conductance of 20 pS in symmetrical 200 mM NaCl and behaves as a sodium electrode. The single-channel conductance saturates with increasing the concentration of sodium and the channel conductance vs. sodium concentration relation is well described by a simple rectangular hyperbola. The apparent dissociation constant of the channel for sodium is 11 mM and the maximal conductance is 23 pS. The selectivity determined from reversal potentials obtained in mixed ionic conditions is Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+. Calcium blocks the channel in a voltage-dependent manner. Analysis of single-channel membranes showed that the probability of being open (Po) vs. voltage relation is sigmoidal with a value of 0.5 between -90 and -100 mV. The fitting of Po requires at least two closed and one open state. The apparent gating charge required to move through the whole transmembrane voltage during the closed-open transition is four to five electronic charges per channel. Distribution of open and closed times are well described by single exponentials in most of the voltage range tested and mean open and mean closed times are voltage dependent. The number of charges associated with channel closing is 1.6 electronic charges per channel. Tetrodotoxin blocked the BTX-modified channel being the blockade favored by negative voltages. The apparent dissociation constant at zero potential is 16 nM. We concluded that sodium channels from the squid optic nerve are similar to other BTX-modified channels reconstituted in bilayers and to the BTX-modified sodium channel detected in the squid giant axon.  相似文献   

8.
T Takahashi  A Momiyama 《Neuron》1991,7(6):965-969
Single-channel properties of glycine receptors have been characterized so far only in cultured neurons. To characterize the glycine receptor channels in situ, we applied the patch-clamp technique to spinal neurons in slice preparations. Glycine-gated, single-channel currents were recorded in outside-out patches excised from spinal neurons. In the falling phase of glycinergic inhibitory synaptic currents, single-channel currents were resolved as discrete steps. In both cases, the glycine-gated channels showed similar multiple conductance levels. These results suggest that the receptor channel properties are indistinguishable in the synaptic and extrasynaptic sites. We conclude that multiple conductance states of a receptor channel are the native feature of the glycine receptor in situ.  相似文献   

9.
Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations, batrachotoxin (BTX) induced long-lived single-channel currents (25 pS at 500 mM NaCl) that showed voltage-dependent activation and were blocked by TTX. This block was also voltage dependent, with negative potentials increasing block. The permeability ratios were 4.7 for Na+:K+ and 1.6 for Na+:Li+. The midpoint for steady state activation occurred around -70 mV and did not shift significantly when the NaCl concentration was increased from 50 to 1,000 mM. Veratridine-induced single-channel currents were about half the size of those activated by BTX. Unpurified, nonsolubilized sodium channels from E. electricus membrane fragments were also incorporated into planar bilayers. There were no detectable differences in the characteristics of unpurified and purified sodium channels, although membrane stability was considerably higher when purified material was used. Thus, in the eel, the large, 260-kD polypeptide alone is sufficient to demonstrate single-channel activity like that observed for mammalian sodium channel preparations in which smaller subunits have been found.  相似文献   

10.
The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.  相似文献   

11.
Summary The voltage-dependent sodium channel from the eel electroplax was purified and reconstituted into vesicles of varying lipid composition. Isotopic sodium uptake experiments were conducted with vesicles at zero membrane potential, using veratridine to activate channels and tetrodotoxin to block them. Under these conditions, channel-dependent uptake of isotopic sodium by the vesicles was observed, demonstrating that a certain fraction of the reconstituted protein was capable of mediating ion fluxes. In addition, vesicles untreated with veratridine showed significant background uptake of sodium; a considerable proportion of this flux was blocked by tetrodotoxin. Thus these measurements showed that a significant subpopulation of channels was present that could mediate ionic fluxes in the absence of activating toxins. The proportion of channels exhibiting this behavior was dependent on the lipid composition of the vesicles and the temperature at which the uptake was measured; furthermore, the effect of temperature was reversible. However, the phenomenon was not affected by the degree of purification of the protein used for reconstitution, and channels in resealed electroplax membrane fragments or reconstituted, solely into native eel lipids did not show this behavior. The kinetics of vesicular uptake through these spontaneously-opening channels was slow, and we attribute this behavior to a modification of sodium channel inactivation.  相似文献   

12.
Summary The effects of scorpion and sea anemone polypeptide toxins on partially purified veratridine (VER)-activated Na channels from rat brain were studied at the single-channel level in planar lipid bilayers. The probability of the VER-activated channel being open (P o ) increased with depolarization;P o was 0.5 at –40 to –50 mV. Saxitoxin (STX) blocked VER-activated channels with an apparent dissociation constant of about 1nm at –45 mV. The apparent single-channel conductance was approximately 9 pS, similar to that seen in VER-activated Na channels from skeletal muscle transverse tubules. Addition of sea anemone or scorpion polypeptide toxins to VER-activated Na channels resulted in a 19% increase in apparent single-channel conductance and a hyperpolarizing shift in theP o vs. V m relation such that the channels were more likely to be open at potentials <40 mV. These effects of the polypeptide toxins on the single-channel properties of VER-activated Na channels may account for the previously described potentiation of VER action by polypeptide toxins.  相似文献   

13.
14.
The mechanism of voltage-dependent substate production by external Zn2+ in batrachotoxin-modified Na+ channels from canine heart was investigated by analysis of the current-voltage behavior and single-channel kinetics of substate events. At the single-channel level the addition of external Zn2+ results in an increasing frequency of substate events with a mean duration of approximately 15-25 ms for the substate dwell time observed in the range of -70 to +70 mV. Under conditions of symmetrical 0.2 M NaCl, the open state of cardiac Na+ channels displays ohmic current-voltage behavior in the range of -90 to +100 mV, with a slope conductance of 21 pS. In contrast, the Zn2(+)-induced substate exhibits significant outward rectification with a slope conductance of 3.1 pS in the range of -100 to -50 mV and 5.1 pS in the range of +50 to +100 mV. Analysis of dwell-time histograms of substate events as a function of Zn2+ concentration and voltage led to the consideration of two types of models that may explain this behavior. Using a simple one-site blocking model, the apparent association rate for Zn2+ binding is more strongly voltage dependent (decreasing e-fold per +60 mV) than the Zn2+ dissociation rate (increasing e-fold per +420 mV). However, this simple blocking model cannot account for the dependence of the apparent dissociation rate on Zn2+ concentration. To explain this result, a four-state kinetic scheme involving a Zn2(+)-induced conformational change from a high conductance conformation to a substate conformation is proposed. This model, similar to one introduced by Pietrobon et al. (1989. J. Gen. Physiol. 94:1-24) for H(+)-induced substate behavior in L-type Ca2+ channels, is able to simulate the kinetic and equilibrium behavior of the primary Zn2(+)-induced substate process in heart Na+ channels. This model implies that binding of Zn2+ greatly enhances conversion of the open, ohmic channel to a low conductance conformation with an asymmetric energy profile for Na+ permeation.  相似文献   

15.
Using the cell-attached configuration of the patch clamp technique, we have identified two different types of Ca channels in rat pancreatic beta-cell membranes. The two channels differ in single channel conductance, voltage dependence, and inactivation properties. The single-channel conductance, measured with 100 mM Ba2+ in the pipette, was 21.8 pS for the large channel and 6.4 pS for the small channel. The large-conductance channel is similar to the fast deactivating or L-type Ca channel described in other preparations. It is voltage dependent, has a threshold for activation around -30 mV, and can be activated from a holding potential of -40 mV. On the other hand, the small-conductance Ca channel is similar to the SD or T type Ca channel; it has a lower activation threshold, around -50 mV, and it can be inactivated by holding the membrane potential at -40 mV.  相似文献   

16.
Antibodies against a peptide (SP19) corresponding to a highly conserved, predicted intracellular region of the sodium channel alpha subunit bind rat brain sodium channels with a similar affinity as the peptide antigen, indicating that the corresponding segment of the alpha subunit is fully accessible in the intact channel structure. These antibodies recognize sodium channel alpha subunits from rat or eel brain, rat skeletal muscle, rat heart, eel electroplax, and locust nervous system. alpha subunits from all these tissues except rat skeletal muscle are substrates for phosphorylation by cAMP-dependent protein kinase. Disulfide linkage of alpha and beta 2 subunits was observed for both the RI and RII subtypes of rat brain sodium channels and for sodium channels from eel brain but not for sodium channels from rat heart, eel electroplax, or locust nerve cord. Treatment with neuraminidase reduced the apparent molecular weight of sodium channel alpha subunits from rat and eel brain and eel electroplax by 22,000-58,000, those from heart by 8000, and those from locust nerve cord by less than 4000. Our results provide the first identification of sodium channel alpha subunits from rat heart and locust brain and nerve cord and show that sodium channel alpha subunits are expressed with different subunit associations and posttranslational modifications in different excitable tissues.  相似文献   

17.
We have synthesized the eel electroplax sodium channel core polypeptide in both a cell-free and a frog oocyte system and report it does not possess the unusual electrophoretic properties of the mature, native sodium channel polypeptide isolated from electroplax membranes. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the mature channel polypeptide exhibits both a diffuse banding pattern (microheterogeneity) and an extremely high electrophoretic free mobility. In contrast, the core polypeptide synthesized in vitro or in vivo migrates as a sharp band with a near-normal electrophoretic free mobility (Mr 230,000). The microheterogeneity of the mature peptide has been inferred to result from varying degrees of glycosylation of the channel polypeptide [Miller, J.A., Agnew, W.S., & Levinson, S.R. (1983) Biochemistry 22, 462-470]. We present evidence here that the anomalously high electrophoretic free mobility is due to the binding of large amounts of sodium dodecyl sulfate to posttranslationally modified domains on the protein. In addition, we have followed the posttranslational processing of eel sodium channels in both the eel electrocyte and the frog oocyte. Using lectin binding and Ferguson analysis, we found that the channel was processed relatively rapidly to an intermediate form in the Golgi apparatus that apparently contained fewer carbohydrate and hydrophobic domains than the mature channel. The further addition of carbohydrate and hydrophobic domains, which are required before the channel acquires its characteristic physicochemical properties, proceeded relatively slowly in the electrocyte and appeared not to have occurred to the majority of intermediately processed channels in the frog oocyte.  相似文献   

18.
Two channels were observed in extracts of whole Mycobacterium bovis BCG cells using organic solvents and detergents. The channels derived from organic solvent treatment had a single-channel conductance of about 4.0 nS in 1 M KCl in lipid bilayer membranes with properties similar to those of the channels discovered previously in Mycobacterium smegmatis and Mycobacterium chelonae. The channel was in its open configuration only at low transmembrane potentials. At higher voltages it switched to closed states that were almost impermeable for ions. Lipid bilayer experiments in the presence of detergent extracts of whole cells revealed another channel with a single-channel conductance of only 780 pS in 1 M KCl. Our results indicate that the mycolic acid layer of M. bovis BCG contains two channels, one is cation-selective and its permeability properties can be finely controlled by cell wall asymmetry or potentials. The other one is anion-selective, has a rather small single-channel conductance and is voltage-insensitive. The concentration of channel-forming proteins in the cell wall seems to be small, which is in agreement with the low cell wall permeability for hydrophilic solutes.  相似文献   

19.
Tikhonov DB  Zhorov BS 《FEBS letters》2005,579(20):4207-4212
Sodium channel activators, batrachotoxin and veratridine, cause sodium channels to activate easier and stay open longer than normal channels. Traditionally, this was explained by an allosteric mechanism. However, increasing evidence suggests that activators can bind inside the pore. Here, we model the open sodium channel with activators and propose a novel mechanism of their action. The activator-bound channel retains a hydrophilic pathway for ions between the ligand and conserved asparagine in segment S6 of repeat II. One end of the activator approaches the selectivity filter, decreasing the channel conductance and selectivity. The opposite end reaches the gate stabilizing it in the open state.  相似文献   

20.
We report here the first evidence in intact epithelial cells of unit conductance events from amiloride-sensitive Na+ channels. The events were observed when patch-clamp recordings were made from the apical surface of cultured epithelial kidney cells (A6). Two types of channels were observed: one with a high selectivity to Na+ and one with relatively low selectivity. The characteristics of the low-selectivity channel are as follows: single-channel conductance ranged between 7 and 10 pS (mean = 8.4 +/- 1.3), the current-voltage (I-V) relationship displayed little if any nonlinearity over a range of +/- 80 mV (with respect to the patch pipette) and the channel Na+/K+ selectivity was approximately 3-4:1. Amiloride, a cationic blocker of the channel, reduced channel mean open time and increased channel mean closed times as the voltage of the cell interior was made more negative. Amiloride induced channel flickering at increased negative potentials (intracellular potential with respect to the patch) but did not alter the single-channel conductance or the I-V relationship from that observed in control patches. The characteristics of the high-selectivity channel are: a single-channel conductance of 1-3 pS (mean = 2.8 +/- 1.2), the current-voltage relationship is markedly nonlinear with a Na+/K+ selectivity greater than 20:1. The mean open and closed times for the two types of channels are quite different, the high-selectivity channel being open only about 10% of the time while the low-selectivity channel is open about 30% of the time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号