首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Differentiation of embryonic stem cells into retinal neurons   总被引:14,自引:0,他引:14  
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural progenitors express regulatory factors needed for retinal differentiation and that in response to epigenetic cues a subset of them differentiate along photoreceptor lineage. During the differentiation, they activate photoreceptor regulatory genes, suggesting that ES cell-derived neural progenitors recruit mechanisms normally used for photoreceptor differentiation in vivo. These observations suggest that ES cells can serve as an excellent model for understanding mechanisms that regulate specification of retinal neurons and as an unlimited source of neural progenitors for treating degenerative diseases of the retina by cell replacement.  相似文献   

2.
In the vertebrate embryo, the neural crest cells (NCCs) that migrate out from the neural primordium yield multiple phenotypes, including melanocytes, peripheral neurones and glia and, in the head, cartilage, bone, connective cells and myofibroblasts / vascular smooth muscle cells (SMCs). The differentiation of pluripotent NCCs is mainly directed by local growth factors. Even at postmigratory stages, NC-derived cells exhibit some fate plasticity. Thus, we reported earlier that pigment cells and Schwann cells are able in vitro to interconvert in the presence of endothelin 3 (ET3). Here, we further investigated the capacity of Schwann cells to reprogram their phenotype. We show that purified quail Schwann cells in dissociated cultures produce alpha smooth muscle actin ((alpha)SMA)-expressing myofibroblasts through the generation of a pluripotent progeny. This transdifferentiation took place independently of ET3, but was promoted by transforming growth factor beta1 (TGF(beta)1). Moreover, when implanted into chick embryos, the Schwann cells were found to contribute with host cephalic NCCs to perivascular SMCs. These data provided the first evidence for the acquisition of an NC-derived mesenchymal fate by Schwann cells and further demonstrate that the differentiation state of NC-derived cells is unstable and capable of reprogramming. The high plasticity of Schwann cells evidenced here also suggests that, as in the CNS, glial cells of the PNS may function as NC stem cells in particular circumstances such as repair.  相似文献   

3.
Expression of Schwann cell markers by mammalian neural crest cells in vitro   总被引:3,自引:0,他引:3  
During embryonic development, neural crest cells differentiate into a wide variety of cell types including Schwann cells of the peripheral nervous system. In order to establish when neural crest cells first start to express a Schwann cell phenotype immunocytochemical techniques were used to examine rat premigratory neural crest cell cultures for the presence of Schwann cell markers. Cultures were fixed for immunocytochemistry after culture periods ranging from 1 to 24 days. Neural crest cells were identified by their morphology and any neural tube cells remaining in the cultures were identified by their epithelial morphology and immunocytochemically. As early as 1 to 2 days in culture, approximately one third of the neural crest cells stained with m217c, a monoclonal antibody that appears to recognize the same antigen as rat neural antigen-1 (RAN-1). A similar proportion of cells were immunoreactive in cultures stained with 192-IgG, a monoclonal antibody that recognizes the rat nerve growth factor receptor. The number of immunoreactive cells increased with time in culture. After 16 days in culture, nests of cells, many of which had a bipolar morphology, were present in the area previously occupied by neural crest cells. The cells in the nests were often associated with neurons and were immunoreactive for m217c, 192-IgG and antibody to S-100 protein and laminin, indicating that the cells were Schwann cells. At all culture periods examined, neural crest cells did not express glial fibrillary acidic protein. These results demonstrate that cultured premigratory neural crest cells express early Schwann cell markers and that some of these cells differentiate into Schwann cells. These observations suggest that some neural crest cells in vivo may be committed to forming Schwann cells and will do so provided that they then proceed to encounter the correct environmental cues during embryonic development.  相似文献   

4.
At the onset of migration the quail neural crest contains pluripotent progenitor cells that give rise to both melanocytes and adrenergic neurons as well as progenitor cells that are already committed to the melanogenic or the neuronal pathway. In this paper we show that melanogenic progenitors attain the competence for terminal differentiation prior to adrenergic progenitors. The adrenergic phenotype was only expressed when the crest cells were allowed to proliferate in vitro for at least 3 days. Differentiation into melanocytes, however, occurred even when proliferation was blocked with cytosine arabinoside immediately after explantation of the neural tube.  相似文献   

5.
Directed differentiation of embryonic stem cells into motor neurons   总被引:52,自引:0,他引:52  
Wichterle H  Lieberam I  Porter JA  Jessell TM 《Cell》2002,110(3):385-397
  相似文献   

6.
Neural crest cells separate from the neural epithelium in a region devoid of a basal lamina and migrate along pathways bordered by intact basal laminae. The distribution of basal laminae suggests that they might have an important role in the morphogenesis of the neural crest by acting as a barrier to migration. The experiments reported here have tested directly whether neural crest cells can penetrate a basal lamina. Isolated neural tubes, neural crest cells cultured for 24 hr, or pigmented neural crest cells were explanted onto human placental amnions from which the epithelium had been removed to expose the basal lamina. In no case did neural crest cells or crest derivatives penetrate the basal lamina to invade the underlying stroma. If crest cells were grown on the stromal side of the amnion, they invaded the connective tissue. Pigmented neural crest derivative and [3H]thymidine-labeled nonpigmented crest cells were also confronted with chick embryonic basal laminae by grafting the cells into the lumen of the neural tube at the axial levels where host crest migration had commenced. Most of the grafted cells invaded the neural epithelium and accumulated after 24 hr at the basal surface of the neural tube. A few crest cells escaped through the dorsal surface of the neural tube and entered the overlying ectoderm, presumably through the wound created during the grafting procedure. Some of these grafted cells, located initially by light microscopy, were examined at the higher magnification and resolution offered by the transmission electron microscope to determine the relationship of the grafted cells to the basal lamina. In 50% (14 total) of the cases, the crest cells never reached the basal lamina of the neural tube, but were trapped by cell junctions between the neural epithelial cells. Of the remaining grafted cells that were relocated in the TEM (50%, total 15) all were spread on the basal lamina, but were not seen penetrating it. Likewise, in the three cases where crest cells were found in the epidermal ectoderm, all were in contact with the basal lamina of the ectoderm but did not have any processes extending through it. In three cases, at the level of the light microscope, crest cells were found to extend through the basal surface of the neural tube. In all these instances, the cells followed the dorsal root nerve exiting through a region of the neural tube that is devoid of a basal lamina.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.  相似文献   

8.
The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.  相似文献   

9.
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.  相似文献   

10.
Adhesive extracellular matrix (ECM) molecules appear to play roles in the migration of neural crest cells, and may also provide cues for differentiation of these cells into a variety of phenotypes. We are studying the influences of specific ECM components on crest differentiation at the levels of both individual cells and cell populations. We report here that the glycoproteins fibronectin and laminin differentially affect melanogenesis in cultures of avian neural crest-derived cells. Clusters of neural crest cells were allowed to form on explanted neural tubes for 24 and 48 hr, and then subcultured on uncoated glass coverslips or coverslips coated with fibronectin or laminin. The morphology of cells varied on the three substrata, as did patterns of cell dispersal. Crest cells dispersed most rapidly and extensively on fibronectin. In contrast, cells on laminin dispersed initially, but then assumed a stellate morphology and rapidly formed small aggregates. Cell dispersal was minimal on glass substrata, resulting in a uniformly dense distribution. These patterns of dispersal were similar in subcultures of both 24- and 48-hr clusters, although dispersal of cells from older clusters was less extensive. The rate and extent of melanogenesis correlated with patterns of cell dispersal. Cell from 24-hr clusters underwent melanogenesis significantly more slowly on fibronectin than on the other two substrata. Pigment cells began to differentiate by 2 days of subculture in the cell aggregates on laminin and in the dense centers of cultures on untreated glass. By 5 days, there was significantly more melanogenesis in cultures on laminin and glass than on fibronectin substrata. Melanogenesis in cultures of 48-hr clusters was more rapid and extensive on control (glass) substrata than on fibronectin or laminin, correlating with reduced cell dispersal. We conclude that fibronectin and laminin, which are found along neural crest migratory pathways in vivo, can affect melanogenesis in vitro by regulating patterns of cell dispersal.  相似文献   

11.
12.
13.
14.
The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from protocols optimized for the culture of rat NC. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC.  相似文献   

15.
Mouse embryonic stem (ES) cells can be differentiated into neural lineage cells, but the differentiation efficiency remains low. This study revealed two important factors that influence the neural differentiation efficiency of mouse ES cells: the first is the quality of embryonic bodies (EBs); good quality of EBs consistently originated from a suspension culture of 1 × 105 ES cells/ml serum-free chemically defined neural inducing medium and they exhibited a smooth round shape, with a dark central region surrounded by a light band. Such EBs are capable of attaining high neural differentiation efficiency. However, poor quality EBs originated from a suspension culture of 1 × 106 ES cells/ml serum-free chemically defined neural inducing medium and exhibited an irregular shape or adhered to the bottom of the dish; they displayed low neural differentiation efficiency. The second factor is the seeding density of EBs: a low seeding density (5 EBs/cm2) induced cells to differentiate into a more caudalized subtypes compared to the cells obtained from high seeding density (20 EBs/cm2). These findings provided fresh insight into the neural induction of mouse ES cells.  相似文献   

16.
低氧促进神经干细胞向多巴胺能神经元分化   总被引:2,自引:0,他引:2  
Zhao T  Zhang CP  Zhu LL  Jin B  Huang X  Fan M 《生理学报》2007,59(3):273-277
神经干细胞(neural stem cells,NSCs)作为具有多向分化潜能的神经前体细胞,被广泛应用于细胞移植等研究,而低氧不但调节干细胞的体外增殖,在干细胞分化中也具有重要的作用。本文着重探讨了低氧对NSCs分化的调节作用。采用Wistar孕大鼠(E13.5d),分离胚胎中脑NSCs,加入无血清DMEM/F12培养液(含20ng/mL EGF、20ng/mL bFGF、1% N2和B27),3~5d后传代,细胞培养至第三代进行诱导分化,分别在低氧(3%O2)和常氧(20%O2)条件下诱导分化3d,然后在常氧条件下分化成熟5~7d(DMEM/F12含1%FBS、N2和B27)后进行检测。Nestin、NeuN以及TH免疫组织化学鉴定NSCs;流式细胞术分析测定NSCs向TH阳性神经元方向的分化;高效液相色谱测定细胞培养上清液中多巴胺(dopamine,DA)含量。结果显示,分离培养的NSCs均为nestin阳性细胞;低氧可明显促进NSCs向神经元方向的分化;TH阳性神经元比例在常氧和低氧组分别为(10.25±1.03)%和(19.88±1.44)%。NSCs诱导分化7d后,低氧组细胞培养上清液中DA浓度明显增加,约为常氧组的2倍(P〈0.05,n=8)。上述结果表明,3%低氧可促进NSCs向神经元方向,特别是向DA能神经元方向分化。这为NSCs应用于临床治疗帕金森病提供了基础。  相似文献   

17.
Mouse embryonic stem (ES) cells were stimulated to differentiate either as adherent monolayer cultures in DMEM/F12 supplemented with N2/B27, or as floating embryoid bodies (EBs) exposed to 1 microM retinoic acid (RA) for 4 days, starting from 4 DIV, and subsequently re-plated in DMEM/F12 medium. Adherent monolayer cultures of ES cells expressed mGlu5 receptors throughout the entire differentiation period. Selective pharmacological blockade of mGlu5 receptors with methyl-6-(phenylethynyl)-pyridine (MPEP) (1 microM, added once a day) accelerated the appearance of the neuronal marker, beta-tubulin. In addition, treatment with MPEP increased the number of cells expressing glutamate decarboxylase-65/67 (GAD(65/67)), a marker of GABAergic neurons. In floating EBs, mGlu5 receptors are progressively replaced by mGlu4 receptors. The orthosteric mGlu4/6/7/8 receptor agonist, L-2-amino-4-phosphonobutanoate (L-AP4), or the selective mGlu4 receptor enhancer, PHCCC,--both combined with RA at concentrations of 30 microM--increased the expression of both beta-tubulin and GAD(65/67), inducing the appearance of fully differentiated neurons that released GABA in response to membrane depolarization. We conclude that mGlu receptor subtypes regulate neuronal differentiation of ES cells in a context-dependent manner, and that subtype-selective ligands of these receptors might be used for the optimization of in vitro protocols aimed at producing GABAergic neurons from ES cells.  相似文献   

18.
The influence of the neural tube on early development of neural crest cells into sensory ganglia was studied in the chick embryo. Silastic membranes were implanted between the neural tube and the somites in 30-somite-stage embryos at the level of somites 21-24, thus separating the early migrated population of neural crest cells from the neural tube. Neural crest cells and peripheral ganglia were visualized by immunofluorescence using the HNK-1 monoclonal antibody and several histochemical techniques. Separation of crest cells from the neural tube caused the selective death of the neural crest cells from which dorsal root ganglia (DRG) would have developed. Complete disappearance of HNK-1 positive cells was evident already 10 hr after silastic implantation, before early differentiation sensory neurons could have reached their peripheral targets. In older embryos, DRG were absent at the level of implantation. In contrast, the development of ventral roots, sympathetic ganglia and adrenal gland was normal, and so was somitic differentiation into cartilage and muscle, while morphogenesis of the vertebrae was perturbed. To overcome the experimentally induced crest cell death, the silastic membranes were impregnated with a 3-day-old embryonic chick neural tube extract. Under these conditions, crest cells which were separated from the tube survived for a period of 30 hr after operation, compared to less than 10 hr in respective controls. The extract of another tissue, the liver, did not protract survival of DRG progenitor cells. Among the cells which survived with neural tube extract, some even succeeded in extending neurites; nevertheless, in absence of normal connections with the central nervous system (CNS) they finally died. Treatment of silastic implanted embryos with nerve growth factor (NGF) did not prevent the experimentally induced crest cell death. These results demonstrate that DRG develop from a population of neural crest cells which depends for its survival and probably for its differentiation upon a signal arising from the CNS, needed as early as the first hours after initiation of migration. Recovery experiments suggest that the subpopulation of crest cells which will develop along the sensory pathway probably depends for its survival and/or differentiation upon a factor contained in the neural tube, which is different from NGF.  相似文献   

19.
Multipotent neural crest cells undergo developmental restrictions during embryogenesis and eventually give rise to the neurons and glia of the peripheral nervous system, melanocytes, and pheochromocytes. To understand how neuronal potential is restricted to a subpopulation of crest-derived cells, we have utilized sensitive markers of early neuronal differentiation to assess neurogenesis in crest-derived cell populations subjected to defined experimental conditions in vitro and in vivo. We describe environmental conditions that either (a) result in the irreversible loss of neurogenic potential over a characteristic time course or (b) maintain neurogenic potential among neural crest cells. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Neuronal differentiation of mouse neural crest cells in vitro   总被引:1,自引:0,他引:1  
The purpose of the present study is to analyze the effect of serum or chick embryo extract (CEE) on the neuronal differentiation of the mouse neural crest cells. When the crest cells were cultured in the medium containing serum at low concentration (5% calf serum), neurite outgrowth was observed. The active outgrowth was detected at 3-4 days in culture. However, in the medium supplemented with 20% calf serum, no neurite appeared, and the crest cells remained fibroblast-like. The differentiation of adrenergic neurons was observed when the crest cells were cultured in the medium containing CEE along with serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号