首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovulation was successfully induced with luteinising hormone releasing hormone in 28 women with hypothalamic amenorrhoea who had failed to respond to treatment with clomiphene. Luteinising hormone releasing hormone was administered in a pulsatile manner with miniaturised automatic infusion systems. The rate of ovarian follicular maturation, as monitored by serial pelvic ultrasonography, was similar to that observed in spontaneous cycles. Endocrine assessment by serial measurement of gonadotrophin, oestradiol, and progesterone concentrations showed hormone concentrations to be within the normal range. Intravenous treatment was required in only two patients, the remainder responding satisfactorily to subcutaneous infusion. All patients conceived within six cycles of treatment, and only one multiple pregnancy occurred.  相似文献   

2.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

3.
4.
5.
Based on the supposition that lamprey GnRH-III (lGnRH-III) elicits FSH releasing activity in swine, synthetic lGnRH-III (peforelin, Maprelin® XP10) was used in puberal estrus synchronized gilts. The secretion of reproductive hormones FSH, LH, estradiol and progesterone was analyzed, and follicle growth and ovulation recorded. Altogether, 24 German Landrace gilts were treated after an 18-day long synchronization of the estrus cycle with Regumate® as follows: 48 h after the last Regumate® feeding they received im either 150 μg Maprelin® XP10 (lGnRH-III, group Maprelin, n = 6), 50 μg Gonavet Veyx® (GnRH-I agonist, group GnRH, n = 6), 850 IE Pregmagon® (eCG, group eCG, n = 6) or saline (group Control, n = 6). Additionally, in eight gilts the concentrations of FSH and LH were analyzed after treatment with 150 μg Maprelin® XP10 (n = 3), 50 μg Gonavet Veyx® (n = 3) or saline (n = 2) at mid-cycle (day 10 of the estrus cycle). Blood samples were collected via implanted jugular vein catheters. Ovarian features were judged endoscopically at the end of the Regumate® feeding and on days 5 and 6 after treatment. Maprelin® XP10 had no effect on FSH release in gilts; neither at the pre-ovulatory period or at mid-cycle. Furthermore, LH levels were unaffected. In contrast, GnRH-I agonist stimulates FSH release, however less compared to LH secretion. LH secretion was induced by GnRH-I both during the follicular phase and at mid-cycle. Equine CG did not stimulate the release of pituitary hormones FSH and LH due to its direct action on the ovary. Increased estradiol concentrations during days 2 to 5 after Regumate® in all treatment groups indicated pre-ovulatory follicle growth in gilts. Equine CG stimulated a higher (P < 0.01) number of ovulatory follicles compared to the other treatment groups. All together, 83 to 100 % of gilts ovulated by day 6 post treatment. In summary, results of our study on reproductive hormone secretion do not provide evidence that synthetic lGnRH-III (Maprelin® XP10) selectively releases FSH in estrus synchronized gilts.  相似文献   

6.
7.
Gonadotropin releasing hormone (GnRH) treatment was examined as a means of improving the efficacy of embryo collection in the sheep following intrauterine insemination of frozen-thawed semen. In summary, treatment consistently improved fertilization rates and the number of fertilized ova collected per ewe was enhanced compared with untreated ewes. The yield of fertilized ova in ewes treated with follicle stimulating hormone (FSH) was maximized by administering GnRH 36 h after progestagen treatment; 24 h was the preferred time in ewes treated with pregnant mare serum gonadotropin (PMSG). There was a significant (P < 0.001) increase in the percentage of unfertilized ova in the former treatment when GnRH was given at 24 h. An examination of the time of insemination (0, 6, 12 and 18 h before the median time of ovulation) indicated that fertilization rates were highest when insemination occurred at 6 h in both GnRH-treated ewes and in untreated ewes. In GnRH-treated ewes, the recovery of ova was lowest when insemination occurred at the time of ovulation. The number of motile frozen-thawed spermatozoa required for fertilization following treatment was estimated to be approximately 20 x 10(6) per uterine horn. GnRH-treatment also improved the yield of fertilized ova in sheep that were naturally mated, although this yield was lower than that obtained with intrauterine insemination of frozen-thawed semen. It is concluded that fertilization failure, a major problem in sheep embryo collection, can be eliminated through judicious use of GnRH treatment and properly timed intrauterine insemination.  相似文献   

8.
Redmer DA  Day BN 《Theriogenology》1981,16(2):195-199
A synthetic progestogen, allyl trenbolone (AT), was fed to sexually mature gilts to determine the effective doses for the control of estrus and ovulation. Gilts were assigned to a control group and 5 treatment groups receiving 10.0, 12.5, 15.0, 17.5 or 20.0 mg of AT mixed in .45 kg of feed/head/day for 18 consecutive days. Ovarian morphology was determined by laparotomy following estrus or at 10 days post-treatment. AT suppressed estrus in all gilts during treatment. Estrus was effectively synchronized in treated gilts. The average interval from withdrawal of progestogen treatment to estrus was 4.5 days for 48 of 50 treated gilts that were in estrus within 10 days after treatment. The average ovulation rate in treated gilts was similar to control gilts. No detrimental side effects, due to treatment, were observed with the possible exception of a slight increase in the incidence of cystic follicles.  相似文献   

9.
S Mabrey  I M Klotz 《Biochemistry》1976,15(1):234-242
The conformation of the gonadotropin releasing hormone (Gn-RH), whose primary sequence is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-GlyNH2, and of several of its structural analogues has been studied by circular dichroism, optical rotatory dispersion, and fluorescence spectroscopy. The effects of pH, guanidine, and temperature on fluorescence emission have also been examined. Titration data demonstrate that the histidine and tyrosine residues are free of any mutual interactions. The similarity of emission spectra in water and in guanidine hydrochloride solutions precludes significant interactions between the fluorescent groups and other residues. Neither the temperature nor the pH profiles of the emission intensities of either tyrosine or tryptophan reveal any fixed secondary structure in Gn-RH. Both the extent of alkaline quenching and the distance of 10-11 A calculated from F?rster energy transfer theory are in accord with a randomly coiled structure with only one residue between tyrosine and tryptophan. Furthermore, the circular dichroism spectrum and optical rotatory dispersion do not exhibit any contributions from peptide bonds in an ordered structure, although there is a perturbation of the peptide absorption region due to overlapping bands from side-chain chromophores. Gn-RH, therefore, appears to behave as a random coil polypeptide in water devoid of any intrachain residue interactions. This nonordered structure in Gn-RH and the lack of any significant differences in the physical-chemical properties of the hormone analogues indicate that a predetermined solution conformation is not required for biological activity. In contrast to its behavior in water, Gn-RH in trifluoroethanol exhibits a conformational transition, with the formation of a beta structure. Differences in conformational changes exhibited by several analogues in trifluoroethanol may be relevant to their relative biological activities at the receptor site.  相似文献   

10.
11.
The biological activity of three gonadotropin releasing hormone (GnRH) antagonists was evaluated in the following assays: suppression of GnRH-mediated luteinizing hormone (LH) secretion by cultured pituitary cells, suppression of the spontaneous LH release by ovariectomized rats, blockade of ovulation in regularly cycling females and inhibition of binding of a potent radiolabeled agonist to rat pituitary membrane homogenates. The peptides were: [Ac-delta 3Pro1,4FDPhe2, DTrp3,6]-GnRH (Antagonist 1); [Ac-delta 3Pro1,4FDPhe2,DNAL(2)3,6]-GnRH (Antagonist 2); and [Ac-DNAL(2)2,4FDPhe2,DTrp3,DArg6]-GnRH (Antagonist 3). All three antagonists exhibited similarly high potency in suppressing LH secretion in vitro, while Antagonist 1 was the most active peptide in the radioreceptor assay. When administered by gavage, Antagonist 3 exhibited the highest potency to inhibit LH secretion in gonadectomized rats and to block ovulation. Comparison of the oral versus the subcutaneous mode of administration of these analogs indicates that less than 1% is absorbed after gavage. However, these data demonstrate that the intragastric administration of GnRH antagonists can lower gonadotropin secretion and interfere with reproductive functions.  相似文献   

12.
13.
Photo-affinity inactivation of gonadotropin releasing hormone receptors   总被引:2,自引:0,他引:2  
E Hazum 《FEBS letters》1981,128(1):111-113
  相似文献   

14.
15.
Administration of an antiserum (0.10–0.25 ml/rat) to the synthetic decapeptide “luteinizing hormone releasing hormone” (LH-RH) suppressed the cyclic surge of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in proestrous rats and prevented ovulation; exogenous LH reversed the block of ovulation. Serum prolactin levels remained unaffected. In ovariectomized rats, the antiserum suppressed the elevated serum levels of both gonadotropins. These findings are compatible with the view that the synthetic decapeptide is identical with the natural hypothalamic hormone that regulates the secretion of both LH and FSH.  相似文献   

16.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   

17.
The biological activities of a series of dimeric analogs of des-Gly10-[D-Lys6]GnRH-NHEt cross-linked at Lys6 by malonic acid and elongated by Gly, i.e., HO-Glyn-CO-CH2-CO-Glyn-OH (n = 0, 1, 2), were analyzed in vitro and in vivo. All three dimeric analogs displayed increased activity in receptor binding and in LH release assays than the original monomer, and dimer Ib (n = 1) showed the highest potency in vitro. This compound also showed the highest activity in the in vivo postcoital assay, in which GnRH agonist potency is measured by inhibition of pregnancy. These results indicate that GnRH receptor activation is substantially enhanced by dimerization of the agonist ligand.  相似文献   

18.
19.

Background

The aim of our retrospective study was to evaluate the 5-year survival and time to castration resistant prostate cancer in patients with hormone sensitive prostate cancer treated with the gonadotropin releasing hormone antagonist, degarelix. Another aim was to evaluate the effects of changing the treatment from degarelix to a gonadotropin releasing hormone agonist after achieving stable disease control, on the clinical and oncological outcomes.

Results

Our analysis was based on the data of 108 patients with prostate cancer who were treated with degarelix. Of these, the treatment was changed from degarelix to a gonadotropin releasing hormone agonist in 57 patients (changed group), and the treatment with degarelix was continued in the other 51 (continued group). The overall 5-year survival was statistically superior in the changed (96.6%) group than that in the continued (74.1%) group (p?=?0.006). The 5-year cancer-specific survival was also superior in the changed (100%) group than that in the continued (84.6%) group (p?=?0.027). The average time to castration resistant prostate cancer was comparable in both the changed (43.3 months) and continued (35.2 months) groups (p?=?0.117). Lower serum levels of prostate specific antigen and alkaline phosphatase were maintained after changing the therapy from degarelix to a gonadotropin releasing hormone agonist.

Conclusions

Degarelix is effective in the treatment of prostate cancer. Degarelix therapy can also be safely changed to a gonadotropin releasing hormone agonist without any adverse clinical or oncological effects.
  相似文献   

20.
Inhibition of polyadenylation of mRNA by gonadotropin releasing hormone   总被引:2,自引:0,他引:2  
The mechanism of extra pituitary inhibitory action of gonadotropin releasing hormone (GnRH) was investigated. Simultaneous injection of GnRH caused dose dependent inhibition of dihydrotestosterone (DHT) induced poly(A) polymerase in the ventral prostate of rat. In addition injection of GnRH to DHT treated animals caused reduced incorporation of 3H-uridine into poly(A)+ mRNA. Since poly(A) segment is known to help in translation of mRNA, it is possible that the inhibitory effect of GnRH is due to the inhibition of polyadenylation of mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号