首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the effects of respiration on left ventricular (LV) dimensions and shortening, we studied chronically instrumented dogs with endocardial sonomicrometer crystals in the anterior-posterior (AP), septal to lateral (SL), and long axes (LA) following pericardiectomy. Ten anesthetized dogs were examined during spontaneous unobstructed respiration, partial inspiratory obstruction (PIO), and Mueller maneuvers (MM). During unobstructed inspiration, end-diastolic dimensions (EDD) demonstrated a significant increase in the AP and a similar decrease in the SL axis (i.e., noncongruent shape changes). During PIO only the SL EDD diminished significantly, while no significant changes occurred in any EDD during MM. Individual dogs also demonstrated noncongruent shape changes at end systole during inspiration. However, the end-systolic dimensions for the entire group demonstrated a significant increase in one dimension during each inspiratory mode with no significant changes in the other two axes suggesting an increased ventricular volume. Regional shortening declined only in the SL axis during both unobstructed respiration and PIO. Spontaneous sighs with large tidal volumes, yet smaller changes in pleural pressure than during the MM, were associated with marked noncongruent shape changes in both diastole and systole. We conclude that 1) estimates of LV volumes during respiration based on only one or two axes and assuming regional congruent shape changes may be misleading; and 2) lung volume changes can affect LV geometry independently of changes in pleural pressure.  相似文献   

2.
Transient analysis of cardiopulmonary interactions. II. Systolic events   总被引:1,自引:0,他引:1  
The etiology of the fall in left ventricular stroke volume (LVSV) and arterial pressure with a negative intrathoracic pressure (NITP) during inspiration is controversial. An increase in LV afterload produced by NITP has been proposed as one explanation but is difficult to evaluate if preload is also altered. To test the hypothesis that a systolic event alone, i.e., a change in LV afterload or contractility, can reduce LVSV during inspiration independent of changes in LV preload, a rapid transient NITP confined to systole was produced by electrocardiogram-triggered phrenic nerve stimulation in eight anesthetized dogs. Intrathoracic descending aortic diameters were measured by sonomicrometry to transduce qualitative changes in aortic transmural pressure. With the airway completely obstructed systolic NITP resulted in a decrease in LVSV (-8.1%, P less than 0.001) but an increase in the systolic anteroposterior (0.54 mm, P less than 0.01) and right-to-left (0.45 mm, P less than 0.01) aortic diameters compared with preceding beat. Similar significant changes were observed with the airway unobstructed. These observations are consistent with an increased afterload imposed on the LV reducing LVSV and egress of blood out of the thorax. Prolonging NITP to include both systole and diastole, a profound fall in LVSV is observed, consistent with the independent influences of systolic and diastolic events combining to diminish LVSV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Exaggerated inspiratory swings in intrathoracic pressure have been postulated to increase left ventricular (LV) afterload. These predictions are based on measurements of LV afterload by use of esophageal or lateral pleural pressure. Using direct measurements of pericardial pressure, we reexamined respiratory changes in LV afterload. In 11 anesthetized vagotomized dogs, we measured arterial pressure, LV end-systolic (ES) and end-diastolic transmural (TM) pressures, stroke volume (SV), diastolic left anterior descending blood flow (CBF-D), and coronary resistance. Dogs were studied before and while breathing against an inspiratory threshold load of -20 to -25 cmH2O compared with end expiration. Relative to end expiration, SV and LVES TM pressures decreased during inspiration and increased during early expiration, effects exaggerated during inspiratory loading. In all cases, LV afterload (LVES TM pressure) changed in parallel with SV. LV end-diastolic TM pressure did not change. CBF-D paralleled arterial pressure, and there were no changes in coronary resistance. In two dogs, regional LVES segment length paralleled calculated changes in LVES TM pressure. We conclude that 1) LV afterload decreases during early inspiration and increases during early expiration, changes secondary to those in SV; 2) changes in CBF-D are secondary to changes in perfusion pressure during the respiratory cycle; and 3) the use of esophageal or lateral pleural pressure to estimate LV surface pressure overestimates changes in LV TM pressures during respiration.  相似文献   

4.
In 12 dogs, we examined the correspondence between esophageal (Pes) and pericardial pressures over the anterior, lateral, and inferior left ventricular (LV) surfaces. Pleural pressure was decreased by spontaneous inspiration, Mueller maneuver, and phrenic stimulation and increased by intermittent positive pressure ventilation (IPPV) and positive end-expiratory pressure (PEEP). To separate effects due to blood flow, we analyzed beating and nonbeating hearts. In beating hearts, there were no significant differences between changes in Pes and pericardial pressures. In arrested hearts, increasing LV pressure by 8 Torr increased pericardial pressures by only 3.6 Torr. With IPPV and PEEP, increases in Pes and pericardial pressures were equal in live hearts and in low-volume arrested hearts (LV pressure = 4 Torr). In high-volume arrested hearts (LV pressure = 12 Torr), the increase in pericardial pressure over the anterior LV surface was less than Pes, whereas that over the lateral and inferior LV surfaces was the same as Pes. At high LV volume, in arrested hearts pericardial pressures decreased less than Pes during negative pressure maneuvers. In another six dogs, external LV configuration and volume were measured. In beating hearts during spontaneous inspiration, Mueller maneuver, and phrenic stimulation (endotracheal tube open), septal-lateral dimension and LV volume decreased by approximately 3% (P less than 0.05). This was also true for PEEP. In arrested hearts, septal-lateral dimension and LV volume decreased only with PEEP. We conclude that 1) the relationship between Pes and pericardial pressures is complex and depends on LV volume, local pericardial compliance, and the means by which Pes is changed, 2) changes in measured pericardial pressures did not completely explain changes in LV configuration, and 3) during different respiratory maneuvers, different forces account for the same observed changes in LV volume and configuration.  相似文献   

5.
Changes in intrathoracic pressure (ITP) can influence cardiac performance by affecting ventricular loading conditions. Because both systemic venous return and factors determining left ventricular (LV) ejection may vary over the cardiac cycle, phasic increases in ITP may differentially affect preload or afterload if delivered at specific points within the cardiac cycle. We studied the hemodynamic effects of cardiac cycle-specific increases in ITP (pulses) delivered by a high-frequency jet ventilator in an acute closed-chested canine model (n = 11), using electromagnetic flow probes to measure biventricular stroke volume. Measurements were taken during a control condition after the induction of acute ventricular failure (AVF) by propranolol hydrochloride and volume infusion. ITP was independently varied without changing lung volume by the inflation of thoracoabdominal binders. Although synchronous pulses had minimal hemodynamic effects in unbound controls, binding pulses timed to occur in early diastole resulted in decreases in LV filling pressure and left ventricular stroke volume (SVlv) (P less than 0.05). In the AVF condition, pulses increased LV performance, evidenced by increases in SVlv (P less than 0.01), despite decreases in LV filling pressure (P less than 0.05). This effect is maximized by binding and by timing the pulses to occur in systole. We conclude that cardiac cycle-specific increases in ITP can significantly affect cardiac performance. These effects appear to be related to the ability of such timed pulses to selectively affect LV preload and afterload.  相似文献   

6.
With respiration, right ventricular end-diastolic volume fluctuates. We examined the importance of these right ventricular volume changes on left ventricular function. In six mongrel dogs, right and left ventricular volumes and pressures and esophageal pressure were simultaneously measured during normal respiration, Valsalva maneuver, and Mueller maneuver. The right and left ventricular volumes were calculated from cineradiographic positions of endocardial radiopaque markers. Increases in right ventricular volume were associated with changes in the left ventricular (LV) pressure-volume relationship. With normal respiration, right ventricular end-diastolic volume increased 2.3 +/- 0.7 ml during inspiration, LV transmural diastolic pressure was unchanged, and LV diastolic volume decreased slightly. This effect was accentuated by the Mueller maneuver; right ventricular end-diastolic volume increased 10.4 +/- 2.3 ml (P less than 0.05), while left ventricular end-diastolic pressure increased 3.6 mmHg (P less than 0.05) without a significant change in left ventricular end-diastolic volume. Conversely, with a Valsalva maneuver, right ventricular volume decreased 6.5 +/- 1.2 ml (P less than 0.05), and left ventricular end-diastolic pressure decreased 2.2 +/- 0.5 mmHg (P less than 0.05) despite an unchanged left ventricular end-diastolic volume. These changes in the left ventricular pressure-volume relationship, secondary to changes in right ventricular volumes, are probably due to ventricular interdependence. Ventricular interdependence may also be an additional factor for the decrease in left ventricular stroke volume during inspiration.  相似文献   

7.
This study evaluated right ventricular (RV) and left ventricular (LV) diastolic tolerance to afterload and SERCA2a, phospholamban and sodium-calcium exchanger (NCX) gene expression in Wistar rats. Time constant tau and end diastolic pressure-dimension relation (EDPDR) were analyzed in response to progressive RV or LV afterload elevations, induced by beat-to-beat pulmonary trunk or aortic root constrictions, respectively. Afterload elevations decreased LV- tau, but increased RV-tau. Whereas LV- tau analyzed the major course of pressure fall, RV- tau only assessed the last fourth. Furthermore, RV afterload elevations progressively upward shifted RV EDPDR, whilst LV afterload elevations did not change LV-EDPDR. SERCA2a and phospholamban mRNA were similar in both ventricles. NCX-mRNA was almost 50 % lower in RV than in LV. Left ventricular afterload elevations, therefore, accelerated the pressure fall and did not induce diastolic dysfunction, indicating high LV diastolic tolerance to afterload. On the contrary, RV afterload elevations decelerated the late RV pressure fall and induced diastolic dysfunction, indicating small RV diastolic tolerance to afterload. These results support previous findings relating NCX with late Ca(2+) reuptake, late relaxation and diastolic dysfunction.  相似文献   

8.
Left ventricular effects on right ventricular developed pressure.   总被引:2,自引:0,他引:2  
The possibility that left ventricular (LV) performance might affect right ventricular (RV) function through the myocardium was examined by using isolated, flow-perfused, paced rabbit hearts beating isovolumically. Reducing LV volume from its optimal volume to zero caused a 5.7% decrease (N = 10, P less than 0.001) in right ventricular developed pressure (RVDP). Ligating the anterior ventricular branches of the left coronary artery which in the rabbit supply the LV free wall resulted in an additional 9.3% decrease in RVDP (N = 5, P = 0.05) within 3 min of ligation. Finally, cutting the LV free wall from the atrioventricular orifice to the apex (thereby preventing any developed LV free wall force during systole) caused a 45% further decrease in RVDP (N = 2, P less than 0.02). Cineradiographic study showed that the alterations in RVDP resulting from changes in LV volume and coronary occlusion correlated significantly (N = 5, P less than 0.01) with the magnitude of septal bulging into the RV cavity during systole. The results indicate that alteration in LV free wall function and changes in LV volume can directly effect RVDP through the myocardium.  相似文献   

9.
Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O(2) breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (-30 to -39 Torr) and hypercapnia (PCO(2) approximately 60 Torr), and RA and Hex also caused hypoxia (to approximately 42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 +/- 5.0 to 107.3 +/- 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 +/- 0.27 to 1.52 +/- 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 +/- 2.4 to 16.0 +/- 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 +/- 4.1 to 16.0 +/- 4.0 Torr (P < 0.01) with O2 and from 86.0 +/- 8.5 to 78.1 +/- 8.7 Torr (P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 +/- 0.15 to 1.78 +/- 0.18 l/ml for O2 and from 2.91 +/- 0.43 to 2.50 +/- 0.35 l/ml for Hex (both P < 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.  相似文献   

10.
To evaluate, in the absence of lung inflation, the cardiovascular effects of single and repetitive pleural pressure increments induced by thoracic vest inflations and timed to occur during specific portions of the cardiac cycle, seven chronically instrumented dogs were studied. Reflexes and left ventricular (LV) performance were varied by autonomic blockade, circumflex coronary occlusion (with and without beta-blockade), or cardiac arrest. Single late systolic, but not early systolic, vest inflations significantly increased LV stroke volume both before (+12.4%) and after myocardial depression by coronary occlusion+beta-blockade (+18.5%) when performed after a period of apnea to control preload and rate. During vest inflations, LV and aortic pressures increased to a greater degree than esophageal pressure (by 51 vs. 39 mmHg, P = 0.0001). Lung inflations (26 trials in 3 dogs) during early or late systole failed to increase stroke volume, despite peak esophageal pressures of 11-26 mmHg. With autonomic reflexes intact, repetitive vest inflations coupled to early systole, late systole, or diastole induced a large (40%) but unspecific systemic flow increase. In contrast, during autonomic blockade, flow increased slightly (7.5%, P < 0.05) with late systolic compared with diastolic inflations but not relative to baseline. During coronary occlusion (with or without beta-blockade), no cycle-specific differences were seen, whereas matched vest inflations during cardiac arrest generated 20-30% of normal systemic flow. Thus only single late systolic thoracic vest inflations associated with large increments in pleural pressure increased LV emptying, presumably by decreasing LV afterload and/or focal cardiac compression. However, during myocardial ischemia and depression, coupling of vest inflation to specific parts of the cardiac cycle revealed no hemodynamic improvement, suggesting that benefits of this circulatory assist method, if any, are minor and may be restricted to conditions of cardiac arrest.  相似文献   

11.
Pattern of right ventricular pressure (RVP) fall and its afterload dependence were examined by analyzing ventricular pressure curves and corresponding pressure dP/dt phase planes obtained in both ventricles in the rat heart in situ. Time and value of dP/dt(min), and the time constant tau were measured at baseline and during variable RV afterload elevations, induced by beat-to-beat pulmonary trunk constrictions. RVP and left ventricular pressure (LVP) decays were divided into initial accelerative and subsequent decelerative phases separated by corresponding dP/dt(min). At baseline, LVP fall was decelerative during 4/5 of its course, whereas only 1/3 of RVP decay occurred in a decelerative fashion. During RV afterload elevations, the absolute value of RV-dP/dt(min) and RV-tau increased, whilst time to RV dP/dt(min) decreased. Concomitantly, the proportion of RVP decay following a decelerative course increased, so that in highly RV afterloaded heartbeats RVP fall became more similar to LVP fall. In conclusion, RVP and LVP decline have distinct patterns, their major portion being decelerative in the LV and accelerative in the RV. In the RV, dP/dt(min), tau and the proportional contribution of accelerative and decelerative phases for ventricular pressure fall are afterload-dependent. Consequently, tau evaluates a relatively much shorter segment of RVP than LVP fall.  相似文献   

12.
We studied the cardiovascular effects of phasic increases in intrathoracic pressure (ITP) by high-frequency jet ventilation in an acute pentobarbital-anesthetized intact canine model both before and after the induction of acute ventricular failure by large doses of propranolol. Chest and abdominal pneumatic binders were used to further increase ITP. Respiratory frequency, percent inspiratory time, mean ITP, and swings in ITP throughout the respiratory cycle were independently varied at a constant-circulating blood volume. We found that pertubations in mean ITP induced by ventilator adjustments accounted for all observable steady-state hemodynamic changes independent of respiratory frequency, inspiratory time, or phasic respiratory swings in ITP. Changes in ITP were associated with reciprocal changes in both intrathoracic vascular pressures (P less than 0.01) and blood volume (P less than 0.01). When cardiac function was normal, left ventricular (LV) stroke volume decreased, whereas in acute ventricular failure, LV stroke volume increased in response to increasing ITP when apneic LV filling pressure was high (greater than or equal to 17 Torr) and did not change if apneic LV filling pressure was low (less than or equal to 12 Torr). However, in all animals in acute ventricular failure, LV stroke work increased with increasing ITP. Our study demonstrates that the improved cardiac function seen with increasing ITP in acute ventricular failure is dependent upon adequate LV filling and decreased LV afterload in a manner analogous to that seen with arterial vasodilator therapy in heart failure.  相似文献   

13.
During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.  相似文献   

14.
During acute pulmonary hypertension, both the pericardium and the right ventricle (RV) constrain left ventricular (LV) filling; therefore, pericardiotomy should improve LV function. LV, RV, and pericardial pressures and RV and LV dimensions and LV stroke volume (SV) were measured in six anesthetized dogs. The pericardium was closed, the chest was left open, and the lungs were held away from the heart. Data were collected at baseline, during pulmonary artery constriction (PAC), and after pericardiotomy with PAC maintained. PAC decreased SV by one-half. RV diameter increased, and septum-to-LV free wall diameter and LV area (our index of LV end-diastolic volume) decreased. Compared with during PAC, pericardiotomy increased LV area and SV increased 35%. LV and RV compliance (pressure-dimension relations) and LV contractility (stroke work-LV area relations) were unchanged. Although series interaction accounts for much of the decreased cardiac output during acute pulmonary hypertension, pericardial constraint and leftward septal shift are also important. Pericardiotomy can improve LV function in the absence of other sources of external constraint to LV filling.  相似文献   

15.
Elderly female hypertensives with arterial stiffening constitute a majority of patients with heart failure with preserved ejection fraction (HFpEF), a condition characterized by inability to increase cardiac stroke volume (SV) with physical exercise. As SV is determined by the interaction between the left ventricle (LV) and its load, we wished to study the role of arterial hemodynamics for exertional SV reserve in patients at high risk of HFpEF. Twenty-one elderly (67 ± 9 yr) female hypertensive patients were studied at rest and during supine bicycle stress using echocardiography including pulsed-wave Doppler to record flow in the LV outflow tract and arterial tonometry for central arterial pressure waveforms. Arterial compliance was estimated based on an exponential relationship between pressure and volume. The ratio of aortic pressure-to-flow in early systole was used to derive characteristic impedance, which was subsequently subtracted from total resistance (mean arterial pressure/cardiac output) to yield systemic vascular resistance (SVR). It was found that patients with depressed SV reserve (NoRes; reserve <15%; n = 10) showed decreased arterial compliance during exercise, while patients with SV reserve ≥15% (Res; n = 11) showed increased compliance. Exercise produced parallel increases in LV end-diastolic volume and arterial volume in Res patients while NoRes patients exhibited a lesser decrease in SVR and a drop in effective arterial volume. Poor SV reserve in elderly female hypertensives is due to simultaneous failure of LV preload and arterial vasodilatory reserves. Abnormal arterial function contributes to a high risk of HFpEF in these patients.  相似文献   

16.
Although previous studies report a reduction in myocardial volume during systole, myocardial volume changes during the cardiac cycle have not been quantitatively analyzed with high spatiotemporal resolution. We studied the time course of myocardial volume in the anterior mid-left ventricular (LV) wall of normal canine heart in vivo (n = 14) during atrial or LV pacing using transmurally implanted markers and biplane cineradiography (8 ms/frame). During atrial pacing, there was a significant transmural gradient in maximum volume decrease (4.1, 6.8, and 10.3% at subepi, midwall, and subendo layer, respectively, P = 0.002). The rate of myocardial volume increase during diastole was 4.7 +/- 5.8, 6.8 +/- 6.1, and 10.8 +/- 7.7 ml.min(-1).g(-1), respectively, which is substantially larger than the average myocardial blood flow in the literature measured by the microsphere method (0.7-1.3 ml.min(-1).g(-1)). In the early activated region during LV pacing, myocardial volume began to decrease before the LV pressure upstroke. We conclude that the volume change is greater than would be estimated from the known average transmural blood flow. This implies the existence of blood-filled spaces within the myocardium, which could communicate with the ventricular lumen. Our data in the early activated region also suggest that myocardial volume change is caused not by the intramyocardial tissue pressure but by direct impingement of the contracting myocytes on the microvasculature.  相似文献   

17.
To assess the reliability of conductance (G) catheter for evaluating right ventricular (RV) volume changes, a miniature (3.5F) six-electrode catheter was developed and tested in 11 New Zealand rabbit hearts. In five animals the heart was excised; in six it was left in the thorax. RV conductance was recorded while the RV was filled with blood in 0.25-ml steps at different left ventricular (LV) volumes. Linear correlation of measured conductance vs. reference volumes was computed. RV conductance was highly correlated with reference volume [correlation coefficient (r) ranging from 0.991 to 0.999]. Slope of regression lines was not significantly affected by LV volume variations in 1-ml steps or by acute conductance changes of structures surrounding the heart, whereas the intercept was affected only by the 0- to 1-ml LV volume change. In four rabbits, RV conductance changes during a cardiac cycle [stroke volume- (SV) G] were compared in vivo with electromagnetic flow probe-derived estimates of SV (SVem) as stroke volume was varied by graded inferior vena caval occlusion. SV-G correlated well with SVem (r ranging from 0.92 to 0.96). This correlation persisted after the thorax was filled with saline; however, significant differences were found in individual slopes (P < 0.001). These results show that the conductance catheter has a potential to reliably monitor in vivo relative RV volume changes in small-animal hearts.  相似文献   

18.
The conventional explanation for the fall in left ventricular stroke volume (LVSV) with inspiration is that blood pools in the lungs, thereby decreasing pulmonary venous return. In anesthetized dogs, we have found an increase in left ventricular filling pressure (LVFP) with both constant and increasing lung volume during an inspiratory effort. Transmural aortic diastolic pressure rises as LVSV falls and LVFP rises consistent with the hypothesis that a fall in pleural pressure afterloads the left ventricle. Additionally the increase found in right ventricular filling pressure with inspiration may adversely affect LV performance by decreasing LV compliance and/or contractility. Our findings are incompatible with pooling of blood in the lungs being the primary determinant of the fall in LVSV with inspiration.  相似文献   

19.
We aimed to quantify kinetic energy (KE) during the entire cardiac cycle of the left ventricle (LV) and right ventricle (RV) using four-dimensional phase-contrast magnetic resonance imaging (MRI). KE was quantified in healthy volunteers (n = 9) using an in-house developed software. Mean KE through the cardiac cycle of the LV and the RV were highly correlated (r(2) = 0.96). Mean KE was related to end-diastolic volume (r(2) = 0.66 for LV and r(2) = 0.74 for RV), end-systolic volume (r(2) = 0.59 and 0.68), and stroke volume (r(2) = 0.55 and 0.60), but not to ejection fraction (r(2) < 0.01, P = not significant for both). Three KE peaks were found in both ventricles, in systole, early diastole, and late diastole. In systole, peak KE in the LV was lower (4.9 ± 0.4 mJ, P = 0.004) compared with the RV (7.5 ± 0.8 mJ). In contrast, KE during early diastole was higher in the LV (6.0 ± 0.6 mJ, P = 0.004) compared with the RV (3.6 ± 0.4 mJ). The late diastolic peaks were smaller than the systolic and early diastolic peaks (1.3 ± 0.2 and 1.2 ± 0.2 mJ). Modeling estimated the proportion of KE to total external work, which comprised ~0.3% of LV external work and 3% of RV energy at rest and 3 vs. 24% during peak exercise. The higher early diastolic KE in the LV indicates that LV filling is more dependent on ventricular suction compared with the RV. RV early diastolic filling, on the other hand, may be caused to a higher degree of the return of the atrioventricular plane toward the base of the heart. The difference in ventricular geometry with a longer outflow tract in the RV compared with the LV explains the higher systolic KE in the RV.  相似文献   

20.
The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO?max): 58 ± 7 ml·kg?1·min?1] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号