首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing rabbits reutilize the phosphatidylcholine of surfactant with an efficiency of about 95%. The efficiency of reutilization of other components of surfactant have not been determined. 3-day-old rabbits were injected intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPC) mixed with unlabeled natural surfactant and either disaturated [32P]phosphatidylglycerol (DSPG) or [14C]dipalmitoylphosphatidyl-ethanolamine (DPPE). The recovery of [3H]DPPC, [14C]DPPE, and [32P]DSPG in the alveolar wash was measured at different times after injection. By plotting the ratio of [32P]DSPG to [3H]DPPC or [14C]DPPE to [3H]DPPC counts/min in the alveolar wash vs. time after injection we showed that these two phospholipids are reutilized less efficiently than phosphatidylcholine. Based on other studies, several assumptions were made about the kinetics of surfactant phosphatidylethanolamine and phosphatidylglycerol. From the slopes of the semilog plots of total [14C]DPPE and total [32P]DSPG counts/min in the alveolar wash vs. time and these assumptions, we determined that these two phospholipids were reutilized at an efficiency of only 79%.  相似文献   

2.
Partial "sympathectomy" in the neonatal BALB mice was achieved by the treatment with guanethidine. The number of neurons in the stellate ganglion decreased to 20% of the control values and remained constant throughout the subsequent period of 1 month. Partial "chemical sympathectomy" did not affect the postnatal growth and development of the lungs. Partial "chemical sympathectomy" significantly increased the number of secreting cells in bronchiolar and alveolar regions. Secretory activity of the alveolocyte population, type two, synthetizing and secreting surfactant also increased. It has been concluded that the partial "chemical sympathectomy" stimulated the alveolar surfactant secretion.  相似文献   

3.
Mouse alveolar surfactant can be separated by equilibrium centrifugation on continuous sucrose gradients into three subtypes which we call "ultraheavy", "heavy", and "light" on the basis of their buoyant densities. We examined their metabolic relationship by in vivo labeling studies and by physical manipulation, cycling the surface area in vitro in an attempt to convert one subtype into another. Labeling studies indicated rapid quantitative progression of surfactant through ultraheavy, heavy, and light subtypes in sequence. To mimic the in vivo conversion of subtypes in vitro we "cycled" the surface area of surfactant in plastic tubes. Newly secreted surfactant obtained from incubated lungs, as well as surfactant obtained by alveolar lavage and lamellar bodies, exhibited conversion of material from heavier to lighter subtypes. The conversion between subtypes was quantal and was dependent on cycling, temperature, and time. We conclude that the three subtypes are discrete forms of alveolar surfactant that evolve from one into another. Cycling may provide a means to study the mechanisms of their interconversion in vitro.  相似文献   

4.
Low Reynolds number airflow in the pulmonary acinus and aerosol particle kinetics therein are significantly conditioned by the nature of the tidal motion of alveolar duct geometry. At least two components of the ductal structure are known to exhibit stress-strain hysteresis: smooth muscle within the alveolar entrance rings, and surfactant at the air-tissue interface. We hypothesize that the geometric hysteresis of the alveolar duct is largely determined by the interaction of the amount of smooth muscle and connective tissue in ductal rings, septal tissue properties, and surface tension-surface area characteristics of surfactant. To test this hypothesis, we have extended the well-known structural model of the alveolar duct by Wilson and Bachofen (1982, "A Model for Mechanical Structure of the Alveolar Duct," J. Appl. Physiol. 52(4), pp. 1064-1070) by adding realistic elastic and hysteretic properties of (1) the alveolar entrance ring, (2) septal tissue, and (3) surfactant. With realistic values for tissue and surface properties, we conclude that: (1) there is a significant, and underappreciated, amount of geometric hysteresis in alveolar ductal architecture; and (2) the contribution of smooth muscle and surfactant to geometric hysteresis are of opposite senses, tending toward cancellation. Quantitatively, the geometric hysteresis found experimentally by Miki et al. (1993, "Geometric Hysteresis in Pulmonary Surface-to-Volume Ratio during Tidal Breathing," J. Appl. Physiol. 75(4), pp. 1630-1636) is consistent with little or no smooth muscle tone in anesthetized rabbits in control conditions, and with substantial smooth muscle activation following methacholine challenge. The observed local hysteretic boundary motion of the acinar duct would result in irreversible acinar flow fields, which might be important mechanistic contributors to aerosol mixing and deposition deep in the lung.  相似文献   

5.

Background

Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e.g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf®) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages.

Methods

Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages.

Results

Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage.

Conclusions

We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages.  相似文献   

6.
We have earlier identified the presence of a 36 kDa Ca2+-dependent phospholipid-binding protein (PLBP) in guinea pig alveolar type II cells. PLBP has been suggested to act as a mediator in facilitating and regulating intracellular surfactant assembly and delivery to the plasma membrane of type II cells for secretion into alveolar space. It has been reported that cigarette smoke exposure (CSE) causes a decrease in the surfactant activity in bronchial washings. We have also reported earlier that mainstream (MS) and sidestream (SS) CSE causes desensitization of -adrenoreceptors in guinea pig alveolar type II cells. Since both Ca2+ and -adrenoreceptors are involved in surfactant secretion and PLBP is involved in surfactant delivery, it is important to know whether CSE causes any change in the PLBP level in alveolar type II cells. In the present study, we have demonstrated that MS and SS CSE causes a significant increase in the levels of PLBP in alveolar type II cells (107 and 150%, respectively) and in lung lavage (42 and 125%, respectively) in comparison to that in sham control (430 ng/mg protein in alveolar type II cells and 780 ng/mg protein in lung lavage). The mechanism by which smoke exposure causes an elevation in the levels of PLBP in alveolar type II cells and lung lavage remains to be investigated.  相似文献   

7.
The influence of immobilization stress on the lipid composition of alveolar surfactant and lungs in rats immobilized for 12 and 24 hours, the effects of phospholipase A2, and lipid transfer activity in alveolar surfactant were investigated. The results indicate that alveolar surfactant phospholipids underwent more significant alterations compared to lung phospholipids. Furthermore, phospholipase A2 and lipid transfer activity were reduced in alveolar surfactant of immobilized rats. The reported data suggest that the lower lipid transfer activity might be responsible for the reduced phospholipids in the surfactant system.  相似文献   

8.

Background

Ischemia/reperfusion (I/R) injury, involved in primary graft dysfunction following lung transplantation, leads to inactivation of intra-alveolar surfactant which facilitates injury of the blood-air barrier. The alveolar epithelial type II cells (AE2 cells) synthesize, store and secrete surfactant; thus, an intracellular surfactant pool stored in lamellar bodies (Lb) can be distinguished from the intra-alveolar surfactant pool. The aim of this study was to investigate ultrastructural alterations of the intracellular surfactant pool in a model, mimicking transplantation-related procedures including flush perfusion, cold ischemia and reperfusion combined with mechanical ventilation.

Methods

Using design-based stereology at the light and electron microscopic level, number, surface area and mean volume of AE2 cells as well as number, size and total volume of Lb were determined in a group subjected to transplantation-related procedures including both I/R injury and mechanical ventilation (I/R group) and a control group.

Results

After I/R injury, the mean number of Lb per AE2 cell was significantly reduced compared to the control group, accompanied by a significant increase in the luminal surface area per AE2 cell in the I/R group. This increase in the luminal surface area correlated with the decrease in surface area of Lb per AE2. The number-weighted mean volume of Lb in the I/R group showed a tendency to increase.

Conclusion

We suggest that in this animal model the reduction of the number of Lb per AE2 cell is most likely due to stimulated exocytosis of Lb into the alveolar space. The loss of Lb is partly compensated by an increased size of Lb thus maintaining total volume of Lb per AE2 cell and lung. This mechanism counteracts at least in part the inactivation of the intra-alveolar surfactant.  相似文献   

9.
The surface activity of the seven-fold washing of the right lung was measured on the modified Wilhelmy's balance after the leftside pneumonectomy in rats. It appeared to be normal (gamma min-23--24 dynes/cm) up to the 5th day, and at the remote postoperative periods. The intracellular edema of the air-blood barrier components and the release of the edema fluid into the alveolar lumen in the "vesicle" composition failed to influence the surface properties of the lung surfactant. A sharp increase of the alveolar dimensions on the 5th--7th postoperative day was followed by an increase of the surface-active properties of the lung washings (gamma-min-11--15 dynes/cm) and by the intensified secretion of the material of the osmiophilic lamellar bodies from the alveolar cells of the 2nd type into the alveolar lumen. The cytological mechanisms providing the intensified production of the surfactant in the hypertrophic alveoli are activation of the lipid synthesis in the alveolar cells of the 2nd type, their hypertrophy, and also the appearance of binuclear cells.  相似文献   

10.

Background

Declining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury. We hypothesized that the previously described preservation-dependent improvement of alveolar surfactant integrity after IR was associated with alterations in intraalveolar SP-A levels.

Methods

Using immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior.

Results

After IR, labelling of tubular myelin for intraalveolar SP-A was significantly increased. In lungs preserved with EuroCollins, the total amount of intracellular surfactant phospholipid was reduced, and infiltration by PMNs and alveolar macrophages was significantly increased. With Celsior no changes in infiltration or intracellular surfactant phospholipid amount occurred. Here, an increase in the number of lamellar bodies per cell was associated with a shift towards smaller lamellar bodies. This accounts for preservation-dependent changes in the balance between surfactant phospholipid secretion and synthesis as well as in inflammatory cell infiltration.

Conclusion

We suggest that enhanced release of surfactant phospholipids and SP-A represents an early protective response that compensates in part for the inactivation of intraalveolar surfactant in the early phase of IR injury. This beneficial effect can be supported by adequate lung preservation, as e.g. with Celsior, maintaining surfactant integrity and reducing inflammation, either directly (via antioxidants) or indirectly (via improved surfactant integrity).  相似文献   

11.
Intrauterine lung development, culminating in physiological pulmonary surfactant production by epithelial type II (TII) cells, is driven by fluid distension through unknown mechanisms. Differentiation of alveolar epithelial and mesenchymal cells is mediated by soluble factors like parathyroid hormone-related protein (PTHrP), a stretch-sensitive TII cell product. PTHrP stimulates pulmonary surfactant production by a paracrine feedback loop mediated by leptin, a soluble product of the mature lipofibroblast (LF). When LFs and TIIs are stretched in coculture, there is a fivefold increase in surfactant phospholipid synthesis that can be "neutralized" by inhibitors of PTHrP or leptin, implicating a paracrine feedback loop in this mechanism. Stretching LFs stimulates PTHrP binding (2.5-fold) and downstream stimulation of triglyceride uptake quantitatively (15-25%) due to upregulation of adipose differentiation-related protein expression. Stretching TII cells increases leptin stimulation of their surfactant phospholipid synthesis threefold, suggesting that retrograde signaling by leptin to TII cells is also stretch sensitive. We conclude that the effect of stretch on alveolar LF and TII differentiation is coordinated by PTHrP, leptin, and their receptors.  相似文献   

12.

Background

Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool.

Methods

Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level.

Results

Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences.

Conclusion

After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.  相似文献   

13.
Alveolar macrophages are essential for the maintenance of surfactant homeostasis. We asked whether surfactant treatment would change alveolar macrophage number and whether the alveolar macrophage phenotype would become activated or apoptotic when challenged in vivo with exogenous surfactant. Surfactant pool size in mice was increased by repetitive surfactant treatments containing 120 mg/kg (110 micromol/kg) saturated phosphatidylcholine. The number of alveolar macrophages recovered by alveolar lavage decreased after the first dose by 49% and slightly increased after the second and third doses. Up to 28.5% of the macrophages became large and foamy, and their appearance normalized within 12 h. Surfactant treatment did not increase the percent of apoptotic or necrotic cells. The alveolar macrophages were not activated as indicated by no change in expression of CD14, CD16, CD54, CD95, and scavenger receptor class A types I and II after surfactant treatment. Surfactant treatment in healthy mice transiently changed the phenotype of alveolar macrophages to large and foamy without indications of changes in the surface markers characteristic of activation.  相似文献   

14.
Edema in the tissue of the right lung developed 24 hours after the leftsided pneumonectomy. It was found that: 1) the layer of acid mucopolysaccharide on the surface of the alveolar and endothelial cells became thicker; 2) accumulation of the product of reaction with the RR on the surface of the alveolar cells of type 1 and of the endothelial cells took place; 3) "blisters" coated with the product of reaction with the RR (Red Ruthenium) appeared. These "blisters" were connected with the plasmolemma of the alveolar and endothelial cells. All these findings suggest that acid mucopolysaccharides of the lung surfactant system participated in the accumulation and elimination of the water from the tissues of the air-blood barrier.  相似文献   

15.
The surface energy of the alveolar surfactant layer is determined in the scope of a modification of the structural model of Larsson et al. [(1999) J Disp Sci Technol 20:1-12], according to which this layer is built up of a lipid monolayer adsorbed at the hypophase/air interface and supported by a network of lipid bilayers immersed into the hypophase, i.e., the alveolar liquid. Formulae are derived for the dependence of the specific surface energy of the surfactant layer on the distance between the bilayers constituting the layer. It is shown that at equilibrium this energy can have values comparable with or less than 1 mJ/m2 needed for normal functioning of the alveolus during the respiration cycle. The specific surface energy of the surfactant layer with monolayer-bilayer structure can have such low values only if the layer is of optimal thickness and if the specific line energy of the monolayer-bilayer contact lines is negative and that of the bilayer-bilayer contact lines is positive. It is found that in dynamic regime the change in the specific surface energy of the alveolar surfactant layer with bilayer-monolayer structure is in qualitative agreement with that determined experimentally during lung inflation and deflation.  相似文献   

16.
Pulmonary complications often accompany the development of acute peritonitis. In this study, we analyzed the alterations of alveolar surfactant phospholipids in rats with experimentally induced peritonitis. The results showed a reduction of almost all phospholipid fractions in pulmonary surfactant of experimental animals. The most abundant alveolar phospholipids-phosphatidylcholine and phosphatidylglycerol were reduced significantly in surfactant of rats with experimental peritonitis. In addition, analysis of the fatty acid composition of these two phospholipids revealed marked differences between experimental and control animals. The activity of phospholipase A2, which is localized in the hydrophyllic phase of alveolar surfactant, was higher in rats with experimental peritonitis compared to sham-operated ones. Also, a weak acyl-CoA:lysophospholipid acyltransferase activity was detected in alveolar surfactant of rats with experimental peritonitis, whereas in control animals this activity was not detectable. The lipid-transfer activity was quite similar in pulmonary surfactant of control and experimental rats. The total number of cells and the percentage of neutrophils were strongly increased in broncho-alveolar lavage fluid from rats with peritonitis. Thus, our results showed that the development of peritonitis was accompanied by pulmonary pathophysiological processes that involved alterations of the phospholipid and fatty acid composition of alveolar surfactant. We suggest that the increased populations of inflammatory cells, which basically participate in internalization and secretion of surfactant components, contributed to the observed alterations of alveolar phospholipids. These studies would be useful for clarification of the pathogenic mechanisms underlying the occurrence of pulmonary disorders that accompany acute inflammatory conditions, such as peritonitis and sepsis.  相似文献   

17.
Pulmonary surfactant is a unique mixture of lipids and surfactant-specific proteins that covers the entire alveolar surface of the lungs. Surfactant is not restricted to the alveolar compartment; it also reaches terminal conducting airways and is present in upper airway secretions. While the role of surfactant in the alveolar compartment has been intensively elucidated both in health and disease states, the possible role of surfactant in the airways requires further research. This review summarizes the current knowledge on surfactant functions regarding the airway compartment and highlights the impact of various surfactant components on allergic inflammation in asthma.  相似文献   

18.
The effect of water on the thermal properties of sheep lung surfactant lipids was determined by differential scanning calorimetry. Dry surfactant exhibited a phase transition with an upper limit of about 54 degrees C, whereas that of the fully hydrated surfactant was about 30 degrees C. The effect of water was confined to a range of hydration values from 0 to 25%. The results indicate that pulmonary surfactant lipids are capable of undergoing both thermotropic and lyotropic mesomorphism in vitro. The degree of hydration of the surfactant could influence its in vivo biophysical role in alveolar dynamics. Indeed, small changes in the surfactant to water ratio induced by regional differences in the surfactant concentration at the alveolar surface during alveolar expansion and contraction could be sufficient to trigger isothermal phase transitions in the surfactant lipids. This would allow changes to occur in the equilibrium between solidus and fluidus surfactant during the respiratory cycle.  相似文献   

19.
We used the model of bilateral cervical vagotomy of adult rabbits to cause respiratory failure characterized by pulmonary edema, decreased lung compliance, and atelectasis. We documented an 18-fold increase in radiolabeled albumin leak from the vascular space into alveolar washes of vagotomy vs. sham-operated rabbits (P less than 0.01). Despite a twofold increase in percent of prelabeled saturated phosphatidylcholine secreted (P less than 0.01), the alveolar wash saturated phosphatidylcholine pool sizes were not different. The minimum surface tensions were 19.6 +/- 2.5 vs. 9.4 +/- 2.2 dyn/cm for alveolar washes from vagotomy and control rabbits, respectively (P less than 0.01). The soluble proteins from alveolar washes inhibited the surface tension lowering properties of natural surfactant, whereas those from the control rabbits did not (P less than 0.01). When vagotomy rabbits in respiratory failure were treated with 50 mg natural surfactant lipid per kilogram arterial blood gas values and compliances improved relative to control rabbits. Vagotomy results in alveolar pulmonary edema, and surfactant dysfunction despite normal surfactant pool sizes and respiratory failure. A surfactant treatment can improve the respiratory failure.  相似文献   

20.

Purpose

Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary distribution and II.) a more homogenous recruitment of alveoli when compared with surfactant or PFC alone.

Methods

Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye) Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach.

Results

Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals.

Conclusions

In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号