首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cleavage of the polyphosphoinositides, catalyzed by phospholipase C purified from ram seminal vesicles, produces phosphorylated inositols containing cyclic phosphate esters (Wilson, D. B., Bross, T. E., Sherman, W. R., Berger, R. A., and Majerus, P. W. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 4013-4017). In the present study we describe the isolation and characterization of inositol 1:2-cyclic 4-bisphosphate and inositol 1:2-cyclic 4,5-trisphosphate, the two cyclic phosphate products of phospholipase C catalyzed cleavage of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, respectively. We established the structures of these two cyclic compounds through 18O labeling of phosphate moieties, phosphomonoesterase digestion, and fast atom bombardment-mass spectrometry. We examined the physiological effects of these compounds in two systems: saponin-permeabilized platelets loaded with 45Ca2+ and intact Limulus photoreceptors. Both inositol 1:2-cyclic 4,5-trisphosphate and the noncyclic inositol 1,4,5-trisphosphate, but not inositol 1:2-cyclic 4-bisphosphate, release 45Ca2+ from permeabilized platelets in a concentration-dependent manner. Injection of inositol 1:2-cyclic 4,5-trisphosphate into Limulus ventral photoreceptor cells induces both a change in membrane conductance and a transient increase in intracellular calcium ion concentration similar to those induced by light. We injected inositol 1,4,5-trisphosphate and inositol 1:2-cyclic 4,5-trisphosphate into the same photoreceptor cell and found that the cyclic compound is approximately five times more potent than the noncyclic compound in stimulating a conductance change. We speculate that inositol 1:2-cyclic 4,5-trisphosphate may function as a second messenger in stimulated cells.  相似文献   

2.
Improved Assay Method for Phospholipase C   总被引:8,自引:0,他引:8       下载免费PDF全文
A lecithin sol dispersed with deoxycholate was found to be attacked by phospholipase C in the presence of calcium ion more rapidly than were any other lecithin sols. The inorganic phosphate could be released quantitatively from the acid soluble phosphate liberated from lecithin by an excess amount of alkaline phosphatase present in phospholipase C reaction mixture. A simple and accurate assay method for phospholipase C was developed with the sol and the alkaline phosphatase.  相似文献   

3.
The synthesis of a dithiolester analog of phosphatidylcholine, 1,2-bis(heptanoylthio)-1,2-dideoxy-sn-glycerol-3-phosphocholine (thio PC), is described. Starting with 1-trityl-sn-glycerol (prepared from D-mannitol), tosylation followed by displacement with potassium methyl xanthate gave a trithiocarbonate. Reductive cleavage of the latter gave a 1,2-dithiol which was then acylated, detritylated, and esterified with choline phosphate. Hydrolysis of thio PC by phospholipase A2 (Naja naja) indicated 95% chiral purity. The rate of hydrolysis as a function of substrate concentration showed a sharp increase at about 0.17 mM, the critical micellar concentration of the lipid. A spectrophotometric assay of phospholipase A2 (by measurement of released thiol groups in the presence of dithionitrobenzoic acid) was quite sensitive. As little as 1 ng of enzyme was detected, representing a rate of about 0.2 nmol of substrate hydrolyzed per min.  相似文献   

4.
1. C-teichoic acid (C-substance) from the walls of Diplococcus pneumoniae contained free amino groups accessible to attack by nitrous acid. Treatment with nitrous acid, followed by reduction with borohydride and hydrolysis with acid, gave ribitol, glucitol and their respective phosphates. 2. Hydrolysis of the polymer with alkali followed by treatment of products with nitrous acid yielded glucose. 3. When alkali hydrolysis was followed by treatment with a phosphomonoesterase, nitrous acid degradation of C-substance yielded glucose and a disaccharide identified as 2-O-(N-acetylgalactosaminyl)-d-ribitol. 4. A partial structure for C-teichoic acid was deduced in which the order of the constituent residues and the position of phosphodiester linkages were established.  相似文献   

5.
Extracts of adult Paramphistomum explanatum have been shown to contain high concentration of acid phosphomonoesterase with maximum activity at pH 4.5. The enzyme has been characterized by an exhibition of an unexpected increase in the inhibitory action of a mercury at 1 mM concentration by EDTA. With a lower concentration of mercury (0.1 mM and below) EDTA gave partial protection against inhibition. Different concentrations of magnesium and cobalt activated the enzyme while fluoride, copper, arsenate, tartrate and p-mercuribenzoate brought about inhibition. EDTA, glycine, glutathione and sodium azide had no effect. There was an indication of the presence of alkaline phosphomonoesterase at pH 10.0. The Km for p-nitrophenyl phosphate hydrolysis was 0.45 mM at pH 4.5.  相似文献   

6.
Inositol Phospholipid Hydrolysis by Rat Sciatic Nerve Phospholipase C   总被引:2,自引:1,他引:1  
Rat sciatic nerve cytosol contains a phosphodiesterase of the phospholipase C type that catalyzes the hydrolysis of inositol phospholipids, with preferences of phosphatidylinositol 4'-phosphate (PIP) greater than phosphatidylinositol (PI) much greater than phosphatidylinositol 4',5'-bisphosphate (PIP2), at a pH optimum of 5.5-6.0 and at maximum rates of 55, 13, and 0.7 nmol/min/mg protein, respectively. Analysis of reaction products by TLC and formate exchange chromatography shows that inositol 1,2-cyclic phosphate (83%) and diacylglycerol are the major products of PI hydrolysis. [32P]-PIP hydrolysis yields inositol bisphosphate, inositol phosphate, and inorganic phosphate, indicating the presence of phosphodiesterase, phosphomonoesterase, and/or inositol phosphate phosphatase activities in nerve cytosol. Phosphodiesterase activity is Ca2+-dependent and completely inhibited by EGTA, but phosphomonoesterase activity is independent of divalent cations or chelating agents. Phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) inhibit PI hydrolysis. They stimulate PIP and PIP2 hydrolysis up to equimolar concentrations, but are inhibitory at higher concentrations. Both diacylglycerols and free fatty acids stimulate PI hydrolysis and counteract its inhibition by PC and lysoPC. PIP2 is a poor substrate for the cytosolic phospholipase C and strongly inhibits hydrolysis of PI. However, it enhances PIP hydrolysis up to an equimolar concentration.  相似文献   

7.
Human platelet plasma membranes incubated in the presence of [gamma-32P]ATP and 15 mM MgCl2 incorporated radioactivity mostly into phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP), which represented together over 90% of the total lipid radioactivity. After washing, reincubation of prelabelled membranes revealed some hydrolysis of the two compounds by phosphomonoesterase(s), as detected by the release of radioactive inorganic phosphate (Pi) from the two phospholipids. This degradation attained 40%/30 min for PIP in the presence of 2 mM calcium and cytosol. The effect of calcium was observed at concentrations equal to or greater than 10(-4) M. In no case did calcium alone facilitate the formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). In contrast, simultaneous addition of 2 mM calcium and 2 mg/ml sodium deoxycholate promoted the formation of IP3 and IP2, indicating phosphodiesteratic cleavage of PIP2 and PIP. Phospholipase C activity was detected at calcium concentrations as low as 10(-7) M, in which case PIP2 hydrolysis was slightly more pronounced compared to PIP. Addition of cytosol increased to some extent the phospholipase C activity, suggesting that the low amount of enzyme remaining in the membrane is sufficient to promote submaximal degradation of PIP2 and PIP. We conclude that platelet polyphosphoinositides are present in the plasma membrane in a state where they remain inaccessible to phospholipase C, which is still fully active even at basal calcium concentrations, i.e., 10(-7) M. These results support the view that phosphodiesteratic cleavage of PIP2 promotes and thus precedes calcium mobilization brought about by IP3. The in vitro model presented here may prove very useful in future studies dealing with the mechanism rendering polyphosphoinositides accessible to phospholipase C attack upon agonist-receptor binding.  相似文献   

8.
Many types of peptide hormone and neurotransmitter receptors mediate hydrolysis of phosphoinositides (PI) and arachidonic acid and arachidonic acid metabolite (AA) release, but the relation between these responses is not clearly defined. We have characterized bradykinin (BK)-mediated AA release and PI hydrolysis in clonal Madin-Darby canine kidney cells (MDCK-D1). Both responses occurred over a similar dose range in response to the B1 and B2 receptor agonist, BK, but not in response to the B1 receptor-selective agonist des-Arg-BK. To test whether AA release occurs via a mechanism which is sequential to and dependent upon PI hydrolysis, we used the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), which activates protein kinase C. TPA treatment blocked BK-mediated PI hydrolysis in MDCK-D1 cells, while at the same time and at similar concentrations enhancing BK-mediated AA release. Thus, TPA treatment dissociated BK-mediated AA release from PI hydrolysis. In addition, treatment of MDCK-D1 cells with neomycin blocked BK-mediated hydrolysis of phosphatidylinositol bisphosphate without reducing BK-mediated AA release. BK treatment increased formation of lysophospholipids with a time course in accord with BK-mediated AA release, indicating that at least part of the BK-mediated AA release was likely derived from activation of phospholipase A2. BK-mediated lysophospholipid production was enhanced by pretreatment with TPA, suggesting that the mechanism of AA release before and after treatment with TPA was the same. BK-mediated AA release and lysophospholipid production was dependent on the presence of extracellular calcium, while the enhanced responses to BK in the presence of TPA were not dependent on the presence of extracellular calcium. TPA treatment also enhanced AA release and lysophospholipid production in response to the calcium ionophore A23187. From these data we propose that BK, acting at B2 receptors, promotes AA release in MDCK cells via a mechanism which is 1) independent of polyphosphoinositide hydrolysis by phospholipase C, 2) dependent upon influx of extracellular calcium and activation of phospholipase A2, and 3) enhanced by activation of protein kinase C.  相似文献   

9.
Reaction of 1-fattyacyl-sn-glycero-3-phosphorylcholine with triphenylphosphine — carbon tetrachloride gave 3-fattyacyl-2-chloro-2-deoxy-sn-glycero-1-phosphorylcholine together with small amounts of other chlorodeoxy isomers. 1-Chloro-1-deoxy-2-palmitoyl-rac-glycero-3-phosphorylcholine was prepared by total synthesis from 3-chloro-2-iodopropyl palmitate. The main step in the synthesis involves the nucleophilic displacement of iodide at C-2 with dibenzyl phosphate anion, which proceeds with an acyloxy migration, leading to the key intermediate 1-chloro-1-deoxy-2-palmitoyl-rac-glycero-3-(dibenzyl phosphate). Hydrogenolysis of this phosphate triester, followed by esterification with choline acetate gave the final product. The properties of the products support an earlier conclusion that the so-called “cyclic lysolecithin” is a mixture of isomeric acyl-chloro-deoxy-glycero-phosphorylcholines in which 1-chloro-1-deoxy-2-acyl-glycero-3-phosphorylcholine is the major component.  相似文献   

10.
The mechanism of phospholipase A2 activation by chemotactic peptide was investigated in human promyelocytic HL60 cells. N-Formyl-methionyl-leucyl-phenylalanine (fMetLeuPhe) and the non-hydrolyzable GTP analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced arachidonic acid release in permeabilized and metabolically inhibited HL60 cells, a preparation in which calcium was buffered and inositol phospholipid hydrolysis was inhibited. Inositol phosphate generation and arachidonic acid were shown to be temporally dissociated. These results suggest that receptor-dependent phospholipase C activity is not required for fMetLeuPhe to induce arachidonic acid release. However, fMetLeuPhe effects were highly calcium-dependent and inhibition of phospholipase C reduced fMetLeuPhe stimulation of arachidonic acid release even in the permeabilized cell preparation. We conclude that although phospholipase A2 activation is linked to the fMetLeuPhe receptor independent of phospholipase C, actions of phospholipase C to mobilize calcium and release diacylglycerol may be important to phospholipase A2 activation in the intact cell.  相似文献   

11.
1. A rat brain supernatant and microsomal fraction contained a phospholipase A1 enzyme which hydrolysed phosphatidylinositol at pH 8 in the absence of calcium. Triolein and phosphatidylcholine were not attacked under the same incubation conditions. 2. No evidence could be obtained for a phospholipase A2 in the microsomal preparation, and in the presence of Ca2+ the release of fatty acid observed was due to phosphatidylinositol phosphodiesterase followed by diacylglycerol lipase action. 3. Brain phosphatidylinositol phosphodiesterase showed extensive activity in the alkaline range (7-8.5) as well as at pH 5-5.5. The activity at higher pH values required higher calcium concentrations and disappeared on purification of the soluble enzyme by ammonium sulphate fractionation. 4. In general the ratio between inositol 1,2-(cyclic)phosphate and inositol 1-phosphate produced by phosphodiesterase action decreased with increasing pH.  相似文献   

12.
The phospholipase activity of rat jejunal brush-border membranes was examined in the presence of several solubilizing agents, by measuring the hydrolysis of endogenous membrane phospholipids, as well as the hydrolysis of exogenous, radiolabelled substrates. Enzyme activity was highly stimulated by dispersion in 1% solutions of bile salts, or in a synthetic, bile-salt derivative, 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate (CHAPS). Under these conditions the endogenous membrane phospholipids were largely degraded to free fatty acids and water-soluble phosphate. In the presence of 1% CHAPS, hydrolysis of exogenous phosphatidylcholine was shown to be due to an initial phospholipase A2-type attack followed by a subsequent lysophospholipase-type attack. These activities co-purified with the brush-border membrane. Maximal phospholipase A2 hydrolysis occurred at an alkaline pH of 8-11, with bile-salt detergents present at greater than their critical micellar concentrations. Hydrolysis was completely divalent-ion independent. Phospholipase A2 activity was not stimulated by 50% diethyl ether or ethanol, or in the presence of 1% solutions of Triton X-100, Zwittergent 3-12, sodium dodecyl sulphate, or n-octylglucoside. Stimulation of phospholipase activity by detergents was not related to their effectiveness at solubilizing the membrane proteins. When assayed individually phosphatidylcholine and lysophosphatidylcholine were each hydrolyzed (at the sn-2 and sn-1 positions, respectively) at a rate of approximately 125 nmol/mg protein per min. When assayed together, the two substrates appeared to compete for the same active site over a wide range of concentrations. It was concluded that the brush-border membrane contains an integral membrane protein with phospholipase A2 and lysophospholipase activities, which is specifically stimulated by bile salts and bile salt-like detergents.  相似文献   

13.
The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by 31P NMR. 31P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are 0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. We also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by 31P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B. cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. We propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.  相似文献   

14.
Pneumococcal C-substance, a ribitol teichoic acid containing choline phosphate   总被引:44,自引:6,他引:38  
1. Pneumococcal C-substance was isolated from the non-capsulated Pneumococcus 1-192R, A.T.C.C. 12213, by extraction with trichloroacetic acid solution followed by chromatography on DEAE-cellulose (HCO(3) (-) form). 2. The polymer contains 7.0% of phosphorus and 6.0% of nitrogen and is composed of phosphate, N-acetyl-d-galactosamine, d-glucose, N-acetyldiaminotrideoxyhexose, ribitol and choline in the molecular proportions 2:1:1:1:1:1. 3. After acid hydrolysis, d-galactosamine hydrochloride and galactosamine 6-phosphate were isolated in crystalline form and crystalline derivatives of d-glucose and anhydroribitol were obtained. A product of partial acid hydrolysis was provisionally characterized as 6'-O-phosphoryl-[O-beta-d-galactosaminyl-(1'-->6)-d-glucose]. 4. C-substance contains free amino groups accessible to attack by 1-fluoro-2,4-dinitrobenzene and nitrous acid. 5. Choline phosphate and ribitol phosphate are units in the polymer. 6. Treatment with hot alkali gave a fragment comprising phosphate, d-galactosamine, d-glucose, diaminotrideoxyhexose and ribitol in the molecular proportions 2:1:1:1:1. 7. After selective N-acetylation, the fragment contained one of its phosphate groups as a phosphomonoester and one as a phosphodiester, shown by potentiometric titration and by treatment with a phosphomonoesterase. 8. C-substance from seven other strains of Pneumococcus possesses a structure common to that described for the strain 1-192R. 9. Capsular materials from 26 different strains of Pneumococcus were analysed for suspected contamination by C-substance. In 19 cases the presence of C-substance with the normal structure was demonstrated, and in the remaining seven cases the contaminating C-substance was probably similarly constituted. 10. F-substance was isolated and the associated fatty acid material analysed.  相似文献   

15.
Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5'-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.  相似文献   

16.
This report documents the use of a new and sensitive colorimetric method for measuring phosphomonoesterase activity. The substrates are the phosphate esters of 4-(p-nitrophenoxy)-1,2-butanediol (PNB), 4-(2,4-dinitrophenoxy)-1,2-butanediol (DNB) and 3-(p-nitrophenoxy)-1,2-propanediol (PNG). The key intermediate in the assay is the nitrophenoxy diol which is obtained by enzyme hydrolysis of its phosphate ester. Periodate oxidation of this substance in solution containing methylamine quantitatively yields its nitrophenolate ion whose concentration is determined colorimetrically. The amount of nitrophenolate ion is thus equivalent to the amount of nitrophenoxy diol whose concentration is a function of the phosphomonoesterase activity in the assay sample. The unhydrolyzed phosphomonoester is completely stable to periodate and the hydrolytic conditions used in the assay. The enzymes used to test the substrates were E. coli alkaline phosphomonoesterase and wheat germ phosphomonoesterase. These new esters were all better substrates than the glycerol phosphate esters. Their Michaelis-Menten constants were determined for E. coli phosphomonoesterase.  相似文献   

17.
Phosphatidic acid was a potent activator of the phosphatidylinositol 4,5-bisphosphate (PtdIns-P2) phospholipase C activity associated with human platelet membranes. Lysophosphatidic acid was half as active as phosphatidic acid, and shortening the fatty acid chain reduced the effectiveness of the corresponding phosphatidic acid. Compounds lacking either the phosphate group (diacylglycerol or phorbol ester) or the fatty acid (glycerol phosphate) were not activators. When the negative charge was contributed by a carboxyl group (fatty acid or phosphatidylserine), stimulation of phospholipase C was weak but detectable. Structural analogs of phosphatidic acid (lipopolysaccharide, lipid A, and 2,3-diacylglucosamine 1-phosphate) were less effective but also enhanced PtdIns-P2 hydrolysis. Phosphatidic acid potentiated the activation of phospholipase C by alpha-thrombin, chelators, and guanine nucleotides. Phosphatidylinositol 4-phosphate and PtdIns-P2 were also effective activators of PtdIns-P2 degradation. Other phospholipids were without effect. The production of inositol 1,4,5-trisphosphate and diacylglycerol via the activation of phospholipase C provides a rationale for the cellular responses evoked by phosphatidic acid and the ability of this phospholipid to potentiate and initiate hormonal responses.  相似文献   

18.
The formation and degradation of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] are of great metabolic importance, because of its role in the mediation of calcium release from intracellular stores. The concentration of Ins(1,4,5)P3 in the cell is regulated by three signaling enzymes: phospholipase C isoforms release Ins(1,4,5)P3 from the plasma membrane by hydrolysis of phosphatidyl inositol 4,5-bisphosphate, whereas inositol phosphate 5-phosphatases remove it by dephosphorylation and a group of inositol phosphate kinases eliminate it by further phosphorylation at its 3- or 6-hydroxy group. The latter group is formed by the three isoforms of Ins(1,4,5)P3 3-kinase (IP3K) and inositol phosphate multikinase. In this article the tissue specific gene expression, molecular structure, role in calcium oscillations, regulation by calcium calmodulin, by phosphorylation and by intracellular localization of the IP3K isoforms are discussed. Another important aspect is the evolution of diverse inositol phosphate metabolizing enzymes from a eukaryotic founder by different mechanisms of gene diversification. Finally the role of IPMK in calcium signaling will be elucidated in more detail.  相似文献   

19.
Antigen immunoglobulin E-mediated secretion of histamine from RBL-2H3 cells is associated with substantial hydrolysis of membrane inositol phospholipids and a rise in the concentration of cytosol Ca2+ (calcium signal). Such responses differed among cloned variant lines of the RBL-2H3 cell line from undetectable (1A3 bromodeoxyuridine-resistant (BUDRR), 2B1 BUDRR, and 1B3 BUDRR lines) to about 80% of those in the parent RBL-2H3 cells. In all but one line (1B3 thioguanine-resistant (TgR)), the intensities of the phosphoinositide response and of the calcium signal were correlated with the secretory response. The 1B3 TgR line had no detectable calcium signal (as measured by quin 2 fluorescence or uptake of 45Ca2+) but paradoxically showed modest rates of hydrolysis of inositol phospholipids and of secretion. The responses of the 1B3 TgR line were, however, dependent on the presence of external Ca2+ ions. The induction of secretion with antigen, therefore, was invariably associated with the hydrolysis of inositol phospholipids, but it was not necessarily associated with a change in concentration of cytosol Ca2+. All antigen unresponsive clones could secrete when synergistic signals were induced by exposure to the Ca2+ -ionophore, A23187 and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate. These lines, otherwise, had immunoglobulin E receptors and had no obvious defect in their capacity to synthesize the inositol phospholipids or in their phenotypic expression of phospholipase C as measured in cell extracts. One finding of possible relevance to the role of guanosine 5'-triphosphate-regulatory proteins in the activation of phospholipase C was the inability of one antigen-nonresponsive line to respond to NaF (in intact cells) or to guanosine 5'-(3-O-thio)triphosphate (in electrically permeabilized cells).  相似文献   

20.
1. Bacilysin, a peptide which yields l-alanine and l-tyrosine on acid hydrolysis, was produced by a strain of Bacillus subtilis (A 14) in a chemically defined medium containing glucose, ammonium acetate or ammonium chloride, potassium phosphate and other inorganic salts, and ferric citrate. 2. Under the conditions used growth was diphasic. Bacilysin was formed during the second phase of slower growth, and there was little production during the stationary phase. Nevertheless, bacilysin production occurred when protein synthesis was inhibited by chloramphenicol. It thus appears that there is no obligatory coupling of protein synthesis and bacilysin synthesis. 3. When dl-[1-(14)C]alanine was added to a growing culture of B. subtilis, (14)C was incorporated into bacilysin, which contains an N-terminal alanine residue. 4. Under similar conditions virtually no (14)C was incorporated into bacilysin from dl-[2-(14)C]tyrosine, l-[U-(14)C]tyrosine or [1-(14)C]acetate, although these compounds were used by the cell for the biosynthesis of other substances. These results indicate that neither tyrosine nor acetate is a precursor of the fragment of bacilysin which yields tyrosine on hydrolysis with hot 6n-hydrochloric acid. 5. The tyrosine-yielding fragment of bacilysin was labelled with (14)C from [1,6-ring-(14)C(2)]shikimic acid. The biosynthesis of bacilysin thus appears to involve a diversion from the pathway leading to aromatic amino acids at the shikimic acid stage, or a subsequent one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号