共查询到20条相似文献,搜索用时 0 毫秒
1.
The possible presence of hexokinase in basal lateral membranes from rat kidney proximal tubules was investigated. Basal lateral membranes were obtained from homogenates of rat kidney cortex by differential centrifugation and free flow electrophoresis. They were further purified by density gradient centrifugation. Hexokinase activity was measured as the phosphorylation of D-[U14C]glucose. Throughout the purification of the membranes, the specific activity of hexokinase decreased while that of (Na+ + K+)-ATPase increased. Hexokinase activity in all fractions could be quantitatively accounted for in terms of cytosolic and mitochondrial enzyme contributions. It is concluded that there is no hexokinase activity in basal lateral membranes from rat kidney. 相似文献
2.
Shimizu H Bolati D Adijiang A Muteliefu G Enomoto A Nishijima F Dateki M Niwa T 《American journal of physiology. Cell physiology》2011,301(5):C1201-C1212
We previously demonstrated that indoxyl sulfate induces senescence and dysfunction of proximal tubular cells by activating p53 expression. However, little is known about the role of nuclear factor (NF)-κB in these processes. The present study examines whether activation (phosphorylation) of NF-κB by indoxyl sulfate promotes senescence and dysfunction in human proximal tubular cells (HK-2 cells). Indoxyl sulfate induced phosphorylation of NF-κB p65 on Ser-276, which was suppressed by N-acetylcysteine, an antioxidant. Furthermore, indoxyl sulfate induced NF-κB p65 expression. Inhibitors of NF-κB (pyrrolidine dithiocarbamate and isohelenin) and NF-κB p65 small interfering RNA (siRNA) suppressed indoxyl sulfate-induced senescence-associated β-galactosidase activity and expression of p53, transforming growth factor (TGF)-β1, and α-smoothe muscle actin (SMA). The induction of p53 expression and p53 promoter activity by indoxyl sulfate were inhibited by pifithrin-α, p-nitro, an inhibitor of p53, whereas p53-transfected cells showed enhanced p53 promoter activity. NF-κB inhibitors suppressed indoxyl sulfate-induced p21 expression, whereas NF-κB p65 siRNA enhanced its expression. NF-κB inhibitors partially alleviated indoxyl sulfate-induced inhibition of cellular proliferation. NF-κB p65 siRNA-transfected cells showed less proliferation in the presence of indoxyl sulfate than control cells. Phosphorylated NF-κB p65 was expressed and colocalized with p53, p21, β-galactosidase, TGF-β1, and α-SMA in the kidneys of chronic renal failure (CRF) rats. AST-120, which reduces serum indoxyl sulfate level, suppressed their expression in the CRF rat kidneys. Taken together, NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. More notably, indoxyl sulfate accelerates proximal tubular cell senescence with progression of CRF through reactive oxygen species-NF-κB-p53 pathway. 相似文献
3.
Deyi Luo Qiunong Guan Kunjie Wang Christopher Y.C. Nguan Caigan Du 《Experimental cell research》2017,350(1):132-139
TGF-βs are multifunctional cytokines, but their roles in human renal homeostasis are not fully understood. This study investigated the role of TGF-β1 in the movement of human renal proximal tubular epithelial cells (PTECs) in a three-dimensional (3D) model. HKC-8 cells, a human PTEC line, were grown in a 3D collagen culture system. Cell movement was observed under a microscope. The gene expression was examined using PCR Arrays or qRT-PCR, and protein levels by Western blot. Here, we showed that the tight junction structure formed between adjacent cells of a HKC-8 cell colony in 3D cultures, and TGF-β1 stimulated their movement, evidenced by the appearance of fingerlike pseudopodia in the leader cells at the edge of the colonies. The cell movement of these human PTECs was correlated with up-regulation of both MMP2 and MMP9 and down-regulation or inactivation of PLAUR and PTK2B. Analysis of TGF-β signaling targets confirmed autocrine production of TGF-β2 and its cleaving enzyme furin as well as SNAI1 by TGF-β1stimulation. Knockdown of TGF-β2 expression disrupted TGF-β1-stimulated PTEC invasiveness, which was correlated with the down-regulation of MMP2 and MMP9. In conclusion, the activation of TGF-β receptor autocrine signaling by up-regulated TGF-β2 may play a pivotal role in TGF-β1-induced human PTEC movement, which could be mediated at least by both MMP2 and MMP9. 相似文献
4.
5.
Demetrius Ellis Tran Dang Sothi Norman P. Curthoys Byron Ballou Ellis D. Avner 《In vitro cellular & developmental biology. Plant》1988,24(8):811-816
Summary The effect of hydrocortisone (HC) in modulating glucocorticoid receptors (GR) and sodium-potassium adenosine triphosphatase
(Na−K ATPase) activity was studied in primary cultures of immunoisolated murine proximal tubular epithelial cells (PTEC).
Utilizing monoclonal antibody against stage-specific embryonic antigen-1, a homogeneous population of PTEC was obtained in
high yield. The cells were cultured to confluence and further treated for 48 h in serum-free growth medium containing no HC
(control); 50 nM HC; or 50 nM HC plus 20 nM of the antiglucocorticoid, RU 38486. PTEC treated with 50 nM HC had 56% of GR binding and 160% Na−K ATPase activity as compared to controls (P<0.01). GR binding was abolished by incubation in RU 38486 whereas Na−K ATPase fell below control values (P<0.05). Brief incubations of HC-treated PTEC with 0.5 mM ouabain resulted in a fall in GR binding without a change in Na−K ATPase activity. These data indicate that in PTEC, HC regulates
GR binding and they suggest that stimulation of Na−K ATPase activity is a direct biological response to this receptor-hormone
interaction. Thus, primary cultures of immunoaffinity-isolated PTEC offer a good model system for investigating the molecular
basis underlying the regulation of GR binding and postreceptor events influenced by glucocorticoids. 相似文献
6.
7.
《Free radical biology & medicine》2009,46(12):1653-1662
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H2O2 threefold above the endogenous H2O2 production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 μM) oxidized the cytosol from a resting value of − 318 ± 5 mV by 48.0 ± 4.6 mV within 2 h; a comparable oxidation was induced by 100 μM H2O2. Whereas resting Cl− secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl− secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for ΔF508 CFTR failed to secrete Cl− in response to pyocyanin or H2O2, indicating that these oxidants specifically target the CFTR and not other Cl− conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H2O2, depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs. 相似文献
8.
Ruth Rollason Viktor Korolchuk Clare Hamilton Mark Jepson George Banting 《The Journal of cell biology》2009,184(5):721-736
CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells. 相似文献
9.
Elisa A. Waxman 《Biochemical and biophysical research communications》2010,391(3):1415-2639
α-Synuclein (α-syn) amyloid filaments are the major ultrastructural component of pathological inclusions that define several neurodegenerative disorders, including Parkinson disease and other disorders that are collectively termed synucleinopathies. Since the aggregation of α-syn is associated with the etiology of these diseases, defining the molecular elements that influence this process may have important therapeutics implication. The deletions of major portions of the hydrophobic region of α-syn (Δ74-79 and Δ71-82) impair the ability to form amyloid. However, mutating residue E83 to an A restored the ability of these proteins to form amyloid. Additionally supporting an inhibitory role of residue E83 on amyloid formation, mutating this residue to an A enhanced amyloid formation in the presence of small molecule inhibitors, such as dopamine and EGCG. Our data, therefore, suggest that the presence and placement of the highly charged E83 residue plays a significant inhibitory role in α-syn amyloid formation and these findings provide important insights in the planning of therapeutic agents that may be capable of preventing α-syn amyloid formation. 相似文献
10.
Tingli Sun Jun Yang Wenpeng Dong Ruiyan Wang Peilong Ma Ping Kang 《Bioscience, biotechnology, and biochemistry》2013,77(8):1363-1370
High glucose (HG) has been reported to be associated with renal dysfunction. And one potential mechanism underlining the dysfunction is the epithelial–mesenchymal transition (EMT) of renal tubular epithelial cells. Present study showed that EMT was induced in the HG-treated renal tubular epithelial cells by promoting the expression of mesenchymal phenotype molecules, such as α-SMA and collagen I, and down-regulating the expression of epithelial phenotype molecule E-cadherin. Moreover, we have identified the down-regulation of miR-15a which was accompanied with the HG-induced EMT. And the miR-15a overexpression inhibited the α-SMA, collagen I expression, and the promotion of E-cadherin expression by targeting and down-regulating AP4 which was also significantly promoted by the HG in the renal tubular epithelial cells. Thus, this study revealed that the weakening regulation on the AP4 expression by miR-15a might contribute to the HG-induced EMT in the renal tubular epithelial cells. 相似文献
11.
Cystic fibrosis (CF) cells exhibit an increase in the protein expression of β-arrestin-2 (βarr2) coincident with perinuclear accumulation of free cholesterol. Arrestins are proteins that both serve as broad signaling regulators and contribute to G-protein coupled receptor internalization after agonist stimulation. The hypothesis of this study is that βarr2 is an important component in the mechanisms leading to cholesterol accumulation characteristic of CF cells. To test this hypothesis, epithelial cells stably expressing GFP-tagged βarr2 (βarr2-GFP) and respective GFP-expressing control cells (cont-GFP) were analyzed by filipin staining. The βarr2-GFP cells show a late endosomal/lysosomal cholesterol accumulation that is identical to that seen in CF cells. This βarr2-mediated accumulation is sensitive to Rp-cAMPS treatment, and depleting βarr2 expression in CF-model cells by shRNA alleviates cholesterol accumulation compared with controls. Cftr/βarr2 double knockout mice also exhibit wild-type (WT) levels of cholesterol synthesis, and WT profiles of signaling protein expression have previously been shown to be altered in CF due to cholesterol-related pathways. These data indicate a significant regulatory role for βarr2 in the development of CF-like cholesterol accumulation and give further insight into cholesterol processing mechanisms. An impact of βarr2 expression on Niemann-Pick type C-1 (NPC1)-containing organelle movement is proposed as the mechanism of βarr2-mediated alterations on cholesterol processing. It is concluded that βarr2 expression contributes to altered cholesterol trafficking observed in CF cells. 相似文献
12.
Casas S Casini P Piquer S Altirriba J Soty M Cadavez L Gomis R Novials A 《American journal of physiology. Endocrinology and metabolism》2010,299(6):E1087-E1095
BACE1 (β-site amyloidogenic cleavage of precursor protein-cleaving enzyme 1) is a β-secretase protein that plays a central role in the production of the β-amyloid peptide in the brain and is thought to be involved in the Alzheimer's pathogenesis. In type 2 diabetes, amyloid deposition within the pancreatic islets is a pathophysiological hallmark, making crucial the study in the pancreas of BACE1 and its homologous BACE2 to understand the pathological mechanisms of this disease. The objectives of the present study were to characterize the localization of BACE proteins in human pancreas and determine their function. High levels of BACE enzymatic activity were detected in human pancreas. In normal human pancreas, BACE1 was observed in endocrine as well as in exocrine pancreas, whereas BACE2 expression was restricted to β-cells. Intracellular analysis using immunofluorescence showed colocalization of BACE1 with insulin and BACE2 with clathrin-coated vesicles of the plasma membrane in MIN6 cells. When BACE1 and -2 were pharmacologically inhibited, BACE1 localization was not altered, whereas BACE2 content in clathrin-coated vesicles was increased. Insulin internalization rate was reduced, insulin receptor β-subunit (IRβ) expression was decreased at the plasma membrane and increased in the Golgi apparatus, and a significant reduction in insulin gene expression was detected. Similar results were obtained after specific BACE2 silencing in MIN6 cells. All these data point to a role for BACE2 in the IRβ trafficking and insulin signaling. In conclusion, BACE2 is hereby presented as an important enzyme in β-cell function. 相似文献
13.
Staršíchová A Hrubá E Slabáková E Pernicová Z Procházková J Pěnčíková K Seda V Kabátková M Vondráček J Kozubík A Machala M Souček K 《Cellular signalling》2012,24(8):1665-1676
Crosstalk between the aryl hydrocarbon receptor (AhR) and transforming growth factor-β1 (TGF-β1) signaling has been observed in various experimental models. However, both molecular mechanism underlying this crosstalk and tissue-specific context of this interaction are still only partially understood. In a model of human non-tumorigenic prostate epithelial cells BPH-1, derived from the benign prostatic hyperplasia, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistently activates the AhR signaling pathway and induces expression of xenobiotic metabolizing enzymes, such as CYP1A1 or CYP1B1. Here we demonstrate that TGF-β1 suppresses the AhR-mediated gene expression through multiple mechanisms, involving inhibition of AhR expression and down-regulation of nuclear AhR, via a SMAD4-dependent pathway. In contrast, TCDD-induced AhR signaling does not affect either TGF-β1-regulated gene expression or epithelial-to-mesenchymal transition. These observations suggest that, in the context of prostate epithelium, TGF-β1 signaling plays a dominant role in the crosstalk with AhR signaling pathway. Given the importance of TGF-β1 signaling in regulation of prostate epithelial tissue homeostasis, as well as the recently revealed role of AhR in prostate development and tumorigenesis, the above findings contribute to our understanding of the mechanisms underlying the crosstalk between the two signaling pathways in the prostate-specific context. 相似文献
14.
Ellen P.S. Conceição Juliana G. Franco Elaine Oliveira Angela C. Resende Taline A.S. Amaral Nayara Peixoto-Silva Magna C.F. Passos Egberto G. Moura Patrícia C. Lisboa 《The Journal of nutritional biochemistry》2013,24(1):81-87
Postnatal early overfeeding (EO) is related to later development of overweight and other metabolic disorders. As oxidative stress is implicated in most human diseases, as obesity and diabetes, we decided to study some parameters related to oxidative stress and insulin signaling in liver from EO animals in adult life. To induce EO, litter size was reduced to three pups per litter (SL: small litter) and groups with normal litter size (NL:10 pups per litter) were used as control. After weaning, rats had free access to standard diet and water. Body weight and food intake were monitored daily and offspring were killed at 180 days-old. Significant differences had P<.05 or less. As expected, SL rats had hyperphagia, higher body weight and higher visceral fat mass at weaning and adulthood. In liver, postnatal EO programmed for lower catalase (? 42%), superoxide dismutase (? 45%) and glutathione peroxidase (? 65%) activities. The evaluation of liver injury in adult SL group showed lower nitrite content (? 10%), higher liver and plasma malondialdehyde content (+ 25% and 1.1-fold increase, respectively). No changes of total protein bound carbonyl or Cu/Zn superoxide dismutase protein expression in liver were detected between the groups. Regarding insulin signaling pathway in liver, SL offspring showed lower IRβ (? 66%), IRS1 (? 50%), phospho-IRS1 (? 73%), PI3-K (? 30%) and Akt1 (? 58%). Indeed, morphological analysis showed that SL rats presented focal areas of inflammatory cell infiltrate and lipid drops in their cytoplasm characterizing a microsteatosis. Thus, we evidenced that postnatal EO can program the oxidative stress in liver, maybe contributing for impairment of the insulin signaling. 相似文献
15.
Bai S Zeng R Zhou Q Liao W Zhang Y Xu C Han M Pei G Liu L Liu X Yao Y Xu G 《International journal of biological sciences》2012,8(6):859-869
Cdc42-interacting protein-4 (CIP4) is an F-BAR (Fer/CIP4 and Bin, amphiphysin, Rvs) family member that regulates membrane deformation and endocytosis, playing a key role in extracellular matrix (ECM) deposition and invasion of cancer cells. These processes are analogous to those observed during the initial epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. The role of CIP4 in renal tubular EMT and renal tubulointerstitial fibrosis was investigated over the course of the current study, demonstrating that the expression of CIP4 increased in the tubular epithelia of 5/6-nephrectomized rats and TGF-β1 treated HK-2 cells. Endogenous CIP4 evidenced punctate localization throughout the cytosol, with elevated levels observed in the perinuclear region of HK-2 cells. Subsequent to TGF-β1 treatment, CIP4 expression increased, forming clusters at the cell periphery that gradually redistributed into the cytoplasm. Simultaneously, EMT induction in cells was confirmed by the prevalence of morphological changes, loss of E-cadherin, increase in α-SMA expression, and secretion of fibronectin. Overexpression of CIP4 promoted characteristics similar to those commonly observed in EMT, and small interfering RNA (siRNA) molecules capable of CIP4 knockdown were used to demonstrate reversed EMT. Cumulatively, results of the current study suggest that CIP4 promotes TGF-β1-induced EMT in tubular epithelial cells. Through this mechanism, CIP4 is capable of inducing ECM deposition and exacerbating progressive fibrosis in chronic renal failure. 相似文献
16.
Ana B. Fernández-Martínez María I. Arenas Jiménez Francisco J. Lucio Cazaña 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(4):672-683
We have previously shown in HK-2 cells that ATRA (all-trans-retinoic acid) up-regulates HIF-1α (hypoxia-inducible factor-1α) in normoxia, which results in increased production of renal protector VEGF-A (vascular endothelial growth factor-A). Here we investigated the role of COXs (cyclooxygenases) in these effects and we found that, i) ATRA increased the expression of COX-1 and COX-2 mRNA and protein and the intracellular levels (but not the extracellular ones) of PGE2. Furthermore, inhibitors of COX isoenzymes blocked ATRA-induced increase in intracellular PGE2, HIF-1α up-regulation and increased VEGF-A production. Immunofluorescence analysis found intracellular staining for EP1-4 receptors (PGE2 receptors). These results indicated that COX activity is critical for ATRA-induced HIF-1α up-regulation and suggested that intracellular PGE2 could mediate the effects of ATRA; ii) Treatment with PGE2 analog 16,16-dimethyl-PGE2 resulted in up-regulation of HIF-1α and antagonists of EP1-4 receptors inhibited 16,16-dimethyl-PGE2- and ATRA-induced HIF-1α up-regulation. These results confirmed that PGE2 mediates the effects of ATRA on HIF-1α expression; iii) Prostaglandin uptake transporter inhibitor bromocresol green blocked the increase in HIF-1α expression induced by PGE2 or by PGE2-increasing cytokine interleukin-1β, but not by ATRA. Therefore only intracellular PGE2 is able to increase HIF-1α expression. In conclusion, intracellular PGE2 increases HIF-1α expression and mediates ATRA-induced HIF-1α up-regulation. 相似文献
17.
Summary Whether both casein and noncasein (serum or whey) proteins of milk are contained within the same secretory vesicles of milk secreting mammary epithelial cells was explored. Antibodies to a major casein and to -lactalbumin of rat milk were localized in thin sections with colloidal gold-conjugated second antibodies. Antibodies to the casein component bound to an antigen present within lumina of Golgi apparatus cisternae and within secretory vesicles. This antigen was also recognized in structures within secretory vesicles and within alveolar lumina which were ultrastructurally identified as casein micelles. Antigens recognized by antibodies to -lactalbumin also were present in Golgi apparatus cisternae and within secretory vesicles. Both anti-casein and anti--lactalbumin antibodies recognized antigens within the same secretory vesicles. These observations show that one major noncasein protein of rat's milk is present in casein-containing secretory vesicles. 相似文献
18.
Gaurav Verma Malabika Datta 《Apoptosis : an international journal on programmed cell death》2010,15(7):864-876
The proinflammatory cytokine, IL-1β (Interleukin-1β) is a significant determinant of pancreatic apoptosis and cell death that
are common characteristics during diabetes. Using human derived pancreatic MIA PaCa-2 cells, we describe one of the underlying
molecular mechanisms behind this observation. Incubation of these cells with IL-1β at doses from 0.5 to 3.0 ng/ml caused significant
cell death at 36 h. This was accompanied with marked increases in JNK and p38 phosphorylation together with increased levels
of the endoplasmic reticulum (ER) stress markers, namely BiP, CHOP, GADD34, ATF4 and sXBP1. IL-1β also led to increased phosphorylation
of eIF2α and all these events could be prevented by pretreatment with the JNK inhibitor, SP600125. A time course study indicated
that while IL-1β mediated JNK phosphorylation was induced as early as 2 h of IL-1β treatment, induction of the ER stress markers
was evident at later time points. IL-1β stimulated JNK phosphorylation was observed even in the presence of the ER stress
inhibitor, 4-phenyl butyrate and the decrease in cell viability was significantly prevented in the presence of the JNK inhibitor.
All these suggest that JNK activation is a pre-requisite for ER stress induction and cell death. Reports till date have consistently
demonstrated JNK activation as a consequence of ER stress induction by IL-1β in the pancreas. We show here for the first time
that the activation of JNK by IL-1β is a prelude to the subsequent induction of ER stress and cell death. These therefore
suggest that the JNK-ER stress axis is critical in deciding the decreased survival status by IL-1β in MIA PaCa-2 cells. 相似文献
19.
Hypoxia of skin is an important physiopathological process in many diseases, such as pressure ulcer, diabetic ulcer, and varicose
ulcer. Although cellular injury and inflammation have been involved in hypoxia-induced dermatic injury, the underlying mechanisms
remain largely unknown. This study was conducted to investigate the effects of cobalt chloride (CoCl2), a hypoxia-mimicking agent, on human skin keratinocytes (HaCaT cells) and to explore the possible molecular mechanisms.
Exposure of HaCaT cells to CoCl2 reduced cell viability and caused overproduction of reactive oxygen species (ROS) and oversecretion of interleukin-6 (IL-6)
and interleukin-8 (IL-8). Importantly, CoCl2 exposure elicited overexpression of cyclooxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-κB) p65 subunit.
Inhibition of COX-2 by NS-398, a selective inhibitor of COX-2, significantly repressed the cytotoxicity, as well as secretion
of IL-6 and IL-8 induced by CoCl2. Inhibition of NF-κB by PDTC (a selective inhibitor of NF-κB) or genetic silencing of p65 by RNAi (Si-p65), attenuated not
only the cytotoxicity and secretion of IL-6 and IL-8, but also overexpression of COX-2 in CoCl2-treated HaCaT cells. Neutralizing anti-IL-6 or anti-IL-8 antibody statistically alleviated CoCl2-induced cytotoxicity in HaCaT cells. N-acetyl-L-cysteine (NAC), a well characterized ROS scavenger, obviously suppressed
CoCl2-induced cytotoxicity in HaCaT cells, as well as secretion of IL-6 and IL-8. Additionally, NAC also repressed overexpression
of COX-2 and phosphorylation of NF- B κ p65 subunit induced by CoCl2 in HaCaT cells. In conclusion, our results demonstrated that oxidative stress mediates chemical hypoxia-induced injury and
inflammatory response through activation of NF-κB-COX-2 pathway in HaCaT cells. 相似文献