首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim: To develop antibody–aptamer functionalized fibre‐optic biosensor for specific detection of Listeria monocytogenes from food products. Methods and Results: Aptamer, a single‐stranded oligonucleotide ligand that displays affinity for the target molecule, was used in the assay to provide sensor specificity. Aptamer‐A8, specific for internalin A, an invasin protein of L. monocytogenes, was used in the fibre‐optic sensor together with antibody in a sandwich format for detection of L. monocytogenes from food. Biotinylated polyclonal anti‐Listeria antibody, P66, was immobilized on streptavidin‐coated optical waveguide surface for capturing bacteria, and Alexa Fluor 647‐conjugated A8 was used as a reporter. The biosensor was able to selectively detect pathogenic Listeria in pure culture and in mixture with other bacteria at a concentration of approx. 103 CFU ml?1. This sensor also successfully detected L. monocytogenes cells from artificially contaminated (initial inoculation of 102 CFU 25 g?1) ready‐to‐eat meat products such as sliced beef, chicken and turkey after 18 h of enrichment. Conclusion: Based on the data presented in this study, the antibody–aptamer functionalized fibre‐optic biosensor could be used as a detection tool for sensitive and specific detection of L. monocytogenes from foods. Significance and Impact of the Study: The study demonstrates feasibility and novel application of aptamer on fibre‐optic biosensor platform for the sensitive detection of L. monocytogenes from food products.  相似文献   

2.
A蛋白定向固定抗体用于椭偏光学生物传感器免疫检测   总被引:9,自引:0,他引:9  
椭偏光学生物传感器是在椭偏光学显微成像技术的基础上发展的一项生物传感技术。它能够直接观测固体表面上的生物分子面密度,毋需任何标记辅助,适合发展成为一种无标记免疫检测技术。研究了在硅片表面上通过A蛋白定向固定抗体分子用于椭偏光学生物传感器免疫检测的可能性。实验结果表明,通过A蛋白固定抗体得到的抗体膜层的均一性和固定量的重复性能够保证椭偏光学生物传感器免疫检测结果的质量。通过A蛋白定向固定的抗体的抗原结合位点趋向一致,显著提高了抗体与抗原结合的能力。此外,通过蛋白A固定的免疫球蛋白G分子能够结合更多的多克隆抗体分子说明通过A蛋白固定的蛋白质分子能够较好地保持其空间构象。  相似文献   

3.
Streptavidin, as a dopant, has been incorporated into a polypyrrole film to bind biotinylated antibody onto the electrode surface. With four biotin binding sites, the incorporation of streptavdin, as confirmed by FTIR and impedance spectroscopy, provided a new method to amplify the response signal from antibody–antigen interaction. Biotinylated anti-goat IgG, as a probe, and goat IgG, as a target, were employed to evaluate the characteristics of the biosensor. With the amplification strategy, the detection sensitivity of the electrochemical impedance spectroscopy was significantly improved. A linear relationship between the charge transfer resistance change (ΔRt) and the concentration of goat IgG ranging from 10 pg/ml to100 ng/ml was obtained.  相似文献   

4.
A novel optical biosensor for homogeneous immunoassay has been developed on the basis of the finding that electrochemical luminescence of pyrene-labelled antigen is extremely inhibited by immunochemical complexation. Electrochemical luminescence homogeneous immunoassay for human serum albumin (HSA), as a model analyte, was performed with a platinum plate electrode which was located in the vicinity of an optical fibre tip. HSA was determined in the concentration range of 3–25 × 10?6 mol/I. To improve electrochemical luminescence measurement an optical fibre electrode has been developed by fabricating a transparent platinum film on the top of an optical fibre. The minimum detectable limit of luminol was 10?11 mol/l with the optical fibre electrode. Luminol was applied as a label for homogeneous immunoassay.  相似文献   

5.
A rapid, sensitive, analytical method for the detection of Clostridium botulinum toxin has been developed. The fiber optic-based biosensor utilizes the evanescent wave of a tapered optical fiber for signal discrimination. A 50 mW argon-ion laser, which generates laser light at 514 nm, is used in conjunction with an optical fiber probe that is tapered at the distal end. Antibodies specific for C. botulinum are covalently attached to the surface of the tapered fiber. The principle of the system is a sandwich immunoassay using rhodamine-labeled polyclonal anti-toxin A immunoglobin G (IgG) antibodies for generation of the specific fluorescent signal. Various anti-toxin antibodies were immobilized to the fibers. Affinity-purified polyclonal horse anti-toxin A antibodies performed better than the IgG fraction from the same horse serum or than the monoclonal anti-toxin A antibody BA11-3. Botulinum toxin could be detected within a minute, at concentrations as low as 5 ng/ml. The reaction was highly specific and no response was observed against tetanus toxin.  相似文献   

6.
Understanding the ways in which two or more proteins interact may give insight into underlying binding and activation mechanisms in biology, methods for protein separation and structure-based antagonism. This review describes ways in which protein recognition has been explored in our laboratory for the HIV-1/cell entry process. Initial contact between an HIV-1 virion particle and a human cell occurs between gp120 (an HIV-1 envelope protein) and CD4 (a human extracellular signaling protein). This interaction leads to a sequence of events which includes a conformational change in gp120, fusion of the HIV-1 and cellular membranes and eventual infection of the cell. Using an optical biosensor and a reporter antibody, we have been able to measure the conformational change in gp120 that occurs upon CD4 binding. We also have used this biosensor system to characterize CD4 mimetics, obtained by peptide synthesis in miniprotein scaffolds. Phage display techniques have been employed to identify novel miniprotein sequences. The combination of biosensor interaction kinetics analysis and phage display provides a useful approach for understanding the recognition mechanisms involved in the HIV/cell docking process. This approach may also be useful in investigating other protein complexes of importance in health and disease.  相似文献   

7.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   

8.
A method has been developed for measurement of antibody affinity and cross-reactivity by surface plasmon resonance spectroscopy using the EK-coil heterodimeric coiled-coil peptide capture system. This system allows for reversible capture of synthetic peptide ligands on a biosensor chip surface, with the advantage that multiple antibody-antigen interactions can be analyzed using a single biosensor chip. This method has proven useful in the development of a synthetic peptide anti-Pseudomonas aeruginosa (PA) vaccine. Synthetic peptide ligands corresponding to the receptor binding domains of pilin from four strains of PA were conjugated to the E-coil strand of the heterodimeric coiled-coil domain and individually captured on the biosensor chip through dimerization with the immobilized K-coil strand. Polyclonal rabbit IgG raised against pilin epitopes was injected over the sensor chip surface for kinetic analysis of the antigen-antibody interaction. The kinetic rate constants, k(on) and k(off), and equilibrium association and dissociation constants, KA and KD, were calculated. Antibody affinities ranged from 1.14 x 10(-9) to 1.60 x 10(-5) M. The results suggest that the carrier protein and adjuvant used during immunization make a dramatic difference in antibody affinity and cross-reactivity. Antibodies raised against the PA strain K pilin epitope conjugated to keyhole limpet haemocyanin using Freund's adjuvant system were more broadly cross-reactive than antibodies raised against the same epitope conjugated to tetanus toxoid using Adjuvax adjuvant. The method described here is useful for detailed characterization of the interaction of polyclonal antibodies with a panel of synthetic peptide ligands with the objective of obtaining high affinity and cross-reactive antibodies in vaccine development.  相似文献   

9.
The feasibility of using protein A to immobilize antibody on silicon surface for a biosensor with imaging ellipsometry was presented in this study. The amount of human IgG bound with anti-IgG immobilized by the protein A on silicon surface was much more than that bound with anti-IgG immobilized by physical adsorption. The result indicated that the protein A could be used to immobilize antibody molecules in a highly oriented manner and maintain antibody molecular functional configuration on the silicon surface. High reproducibility of the amount of antibody immobilization and homogenous antibody adsorption layer on surfaces could be obtained by this immobilization method. Imaging ellipsometry has been proven to be a fast and reliable detection method and sensitive enough to detect small changes in a molecular monolayer level. The combination of imaging ellipsometry and surface modification with protein A has the potential to be further developed into an efficient immunoassay protein chip.  相似文献   

10.
A novel type of fibre-optic immunosensing system has been developed. Agar gel-immobilized liposomes containing carboxyfluorescein were attached to the top of an optical fibre. Complement-mediated immunolysis of the liposome was fluorometrically detected through the fibre. By using dinitrophenyl (DNP) hapten-loaded liposomes, concentrations as low as 500-fold diluted anti-DNP antibody and 0·76 CH50 ml−1 of complement were detected.  相似文献   

11.
A synthetic ligand [TG19318], able to mimic protein A in the recognition of the immunoglobulin Fc portion, has been previously identified in our laboratory through the synthesis and screening of multimeric combinatorial peptide libraries. In this study we have fully characterized its applicability in affinity chromatography for the downstream processing of antibodies, examining the specificity and selectivity for polyclonal and monoclonal immunoglobulins derived from different sources. Ligand specificity was broader than protein A, since IgG deriving from human, cow, horse, pig, mouse, rat, rabbit, goat and sheep sera, IgY obtained from egg yolk, and IgM, IgA and IgE were efficiently purified on TG19318 affinity columns. Adsorbed antibodies were conveniently eluted by a buffer change to 0.1 M acetic acid or 0.1 M sodium bicarbonate pH 9, with full retention of immunological properties. Monoclonal antibodies deriving from cell culture supernatants or ascitic fluids were also conveniently purified on TG19318 affinity columns, even from very diluted samples. The affinity constant for the TG19318-IgG interaction was 0.3 microM, as determined by optical biosensor measurements. Under optimized conditions, antibody purity after affinity purification was close to 95%, as determined by densitometric scanning of SDS-PAGE gels of purified fractions, and maximal column capacity reached 25 mg Ig/ml support. In vivo toxicity studies in mice indicated a ligand oral toxicity greater than 2000 mg kg-1 while intravenous toxicity was close to 150 mg kg-1. Validation of antibody affinity purification processes for therapeutic use, a very complex, laborious and costly procedure, is going to be simplified by the use of TG19318, which could reduce considerably the presence of biological contaminants in the purified preparation, a very recurrent problem when using recombinant or extractive biomolecules as affinity ligands.  相似文献   

12.
Diagnostic catheters based on fibre Bragg gratings (FBG's) are proving to be highly effective for measurement of the muscular activity associated with motility in the human gut. While the primary muscular contractions that generate peristalsis are circumferential in nature, it has long been known that there is also a component of longitudinal contractility present, acting in harmony with the circumferential component to improve the overall efficiency of material movement. We report the detection of longitudinal motion in mammalian intestine using an FBG technique that should be viable for similar detection in humans. The longitudinal sensors have been combined with our previously reported FBG pressure sensing elements to form a composite catheter that allows the relative phase between the two components to be detected. The catheter output has been validated using video mapping in an ex‐vivo rabbit ileum preparation. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The detection of hepatitis B virus surface antigen (HBsAg) with the use of a model IAsys+ two-channel optical biosensor is based on the registration of interaction between anti-HBs monoclonal antibodies forming the surface layer of the biochip of the biosensor cuvette and blood serum HBsAg. For the first time a two-channel optical biosensor has been used for the detection of HBsAg in blood serum samples. The comparative analysis of the detection of HBsAg by two methods, viz. with the use of an optical biosensor and the enzyme immunoassay, has demonstrated lower sensitivity, but higher specificity of the detection of this antigen by means of a model IAsys+ biosensor with the biochip, prepared in the process of the work. The main advantages of the biosensor detection lie in the registration of interaction in real time without introducing special markers into the molecules under study.  相似文献   

14.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

15.
This paper reports a micro-machined piezoelectric membrane-based biosensor array for immunoassay. Goat immunoglobulin G (IgG) and HBsAg were immobilized as the probe molecules on the square piezoelectric membranes of the sensors that have dimensions of 3.5 microm x 500 microm x 500 microm. Due to the mass sensitive nature of these sensors, their resonant frequencies were depressed after the anti-goat IgG or anti-HBsAg was captured by the goat IgG or HBsAg. The resonant frequencies of the sensors were measured by an impedance analyzer. The experimental results demonstrate that the measured frequency change varies from 100 to 700 Hz, and the mass sensitivity of the device is estimated to be about 6.25 Hz/ng. A near linear relationship between the frequency change and the concentration of goat IgG was obtained, and the mass of the attached anti-goat IgG was calculated. The preliminary results discussed in this work indicate that the micro-machined piezoelectric membrane-based biosensor has a potential application as an immunosensor.  相似文献   

16.
Quartz crystal microbalance (QCM) biosensor integrated in a flow injection analysis (FIA) system was used for the investigation of the specific interaction between immunoglobin G (IgG) and histidine. The histidine was immobilized on the gold electrodes of the piezoelectric crystal using appropriate procedures based on self-assembling of the dithiothreitol (DTT). The specific interaction of the immobilized ligand with IgG in solution was followed as a change in the resonant frequency of the modified crystal and studied in real time without any additional labels. With the mass sensitive biosensor system, the differences in affinity of three different species of IgG: human IgG, goat IgG and mouse IgG were easily distinguished and their respective kinetic rate constants (kass and kdiss) and equilibrium association constants (KA) were determined from the curves of frequency versus time. For the interactions, KA were 2.92 x 10(4), 3.23 x 10(4) and 4.08 x 10(4) M(-1) for human IgG, goat IgG and mouse IgG, respectively.  相似文献   

17.
18.
19.
A photonic crystal (PhC) waveguide based optical biosensor capable of label-free and error-corrected sensing was investigated in this study. The detection principle of the biosensor involved shifts in the resonant mode wavelength of nanocavities coupled to the silicon PhC waveguide due to changes in ambient refractive index. The optical characteristics of the nanocavity structure were predicted by FDTD theoretical methods. The device was fabricated using standard nanolithography and reactive-ion-etching techniques. Experimental results showed that the structure had a refractive index sensitivity of 10(-2) RIU. The biosensing capability of the nanocavity sensor was tested by detecting human IgG molecules. The device sensitivity was found to be 2.3±0.24×10(5) nm/M with an achievable lowest detection limit of 1.5 fg for human IgG molecules. Additionally, experimental results demonstrated that the PhC devices were specific in IgG detection and provided concentration-dependent responses consistent with Langmuir behavior. The PhC devices manifest outstanding potential as microscale label-free error-correcting sensors, and may have future utility as ultrasensitive multiplex devices.  相似文献   

20.
A dual channel surface acoustic wave (SAW) device has been used as a biosensor to detect two different microorganisms, Legionella and Escherichia coli, simultaneously. A series of experiments was conducted to optimise the use of the SAW for bacterial detection using a novel protocol of coating bacteria on the sensor surface prior to addition of the antibody. Results were compared with an experiment in which a conventional protocol was utilised, where antibody was coated on the sensor surface prior to exposure to bacteria. The concentration of bacteria that attached to the surface of the SAW device was related to the antibody that specifically bound to it and therefore to frequency in a dose dependent fashion. Unlike conventional microbiological techniques quantitative results can be obtained for Legionella and E. coli down to 10(6) cells per ml within 3 h. In addition E. coli was detected down to 10(5) cells per ml in a modified protocol using sheep IgG as a blocking agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号