首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J Edwards  E Mann    D T Brown 《Journal of virology》1983,45(3):1090-1097
The attachment of high multiplicities of Sindbis virus to tissue-cultured cells followed by brief treatment at low pH has been shown to produce cell fusion (fusion from without). In this report, experiments to determine the effects of low pH on the physical and biological properties of Sindbis virus are described. Exposure of purified Sindbis virions to mildly acidic conditions resulted in a rapid and irreversible alteration in particle density and sedimentation characteristics, followed by a slower loss of infectivity. Infectivity was not restored by a return to neutral pH; rather, the loss of virus infectivity seemed to be initiated by exposure to low pH but continued at neutral pH. The formation of a virus-cell complex in which virions were attached to the cell surface protected the particles from low-pH inactivation, although low pH could still expose virus functions responsible for cell fusion. Low pH was found to induce a conformational change in the E2 polypeptide of the intact virion. These results are discussed with respect to the process of Sindbis virus infection of tissue-cultured cells.  相似文献   

2.
Alphaviruses, such as Sindbis virus, undergo dramatic changes in three-dimensional structure upon exposure to low pH, and such exposure can establish conditions allowing fusion of the virus membrane with a cell plasma membrane upon return to neutral pH. While exposure to low pH is not required for entry of Sindbis virus into vertebrate or invertebrate cells, the conformational changes occurring at low pH may mimic those occurring upon virus-receptor interaction. Here, we employed small-angle neutron scattering with contrast variation to probe how the structure of a mammalian-grown Sindbis virus responds to moderately acidic pH. Several changes took place throughout the virion structure when the pH decreased from 7.2 to 6.4. Specifically, the RNA in the virion core underwent a conformational change. Additionally, the protein was redistributed. A significant amount of protein moved from the layer containing the lipid bilayer to the exterior of the virion. The results improve our understanding of the pH-driven alteration of Sindbis virus structure.  相似文献   

3.
4.
Alphaviruses, like many enveloped animal viruses, enter the cell by fusing with the cell membrane. This fusion occurs only in coated vesicles at a low pH. By using X-ray solution scattering of highly purified virus particles we have gained direct evidence that a drop in pH does not alter the structure of the virus core but does cause a significant change in the structure of the virus envelope. Thus these experiments give direct evidence to support the hypothesis that a reduction in pH causes a conformational change in the virus E protein, which enables it to promote fusion with the cell envelope and trigger virus infection.  相似文献   

5.
Digestion of intact Sindbis virions with α-chymotrypsin produced a single membrane-associated peptide derived from each of the two virion glycoproteins (referred to as RE1 and RE2, or roots derived from E1 and E2, respectively). Amino acid composition data and NH2-terminal sequence analysis established their location at the extreme COOH-terminal end of each glycoprotein. RE1 and RE2 are rich in hydrophobia amino acids and insoluble in aqueous solutions in the absence of detergents, and show differential solubility in organic solvent systems designed for the extraction of lipids. Essentially all of the covalently attached palmitic acid associated with E1 and E2 was found to be clustered in their hydrophobic, membrane-associated roots. Beginning six to seven residues from their NH2 termini, RE1 and RE2 contain uninterrupted sequences of hydrophobic amino acids similar in terms of amino acid composition and length to the transmembrane anchors found in other bitopic integral membrane proteins. By comparing the sequence and composition data obtained here with the sequences of E1 and E2 deduced from complementary DNA sequence analysis (Rice & Strauss, 1981) we can make several observations. First, following their uncharged, putative intramembrane segments (33 and 26 amino acids, respectively), E1 and E2 contain clusters of predominantly basic amino acids. By structural analogy to known transmembrane proteins, E1 probably spans the bilayer but contains only a few residues exposed on the inner face of the virion envelope. In contrast, E2 and PE2 (the precursor to E2), which have been shown to span the bilayer completely, contain an additional 33 COOH-terminal residues, which could be either exposed on the cytoplasmic face of the lipid bilayer or which could loop back into the membrane. This region at the extreme COOH-terminal end of E2, which is protected by the virion envelope from digestion by a-chymotrypsin, contains a second uncharged domain (23 amino acids in length) whose orientation is unknown, but which may be involved in the highly specific interaction of the transmembrane glycoproteins in the plasma membrane with the cytoplasmic nucleocapsid during budding.  相似文献   

6.
Polycaryocyte formation mediated by Sindbis virus glycoproteins.   总被引:3,自引:10,他引:3       下载免费PDF全文
E Mann  J Edwards    D T Brown 《Journal of virology》1983,45(3):1083-1089
The process of cell fusion mediated by Sindbis virus membrane proteins synthesized after infection was examined. At the times after infection at which virus proteins were detectable on the cell surface, Sindbis virus-infected BHK-21 cells were found to express a fusion function after brief treatment at acid pH. In studies employing wild-type virus and temperature-sensitive mutants and testing drug or protease inhibition of virus production, we made the following observations on Sindbis virus-mediated fusion from within. (i) Fusion requires the synthesis of virus glycoproteins and their transport to the cell surface. (ii) Modification of the cell plasma membrane by polypeptides PE2 and E1 alone is not sufficient for expression of the fusion function. (iii) The proteolytic conversion of plasma membrane-associated PE2 to E2 is not essential for fusion. (iv) Glycosylation of virus plasma membrane proteins is essential for fusion. (v) The lesions of Sindbis virus temperature-sensitive mutants do not affect their ability to fuse cells.  相似文献   

7.
Sindbis virus contains two membrane glycoproteins, E1 and E2, which are organized into 80 trimers of heterodimers (spikes). These trimers form a precise T=4 icosahedral protein lattice on the surface of the virus. Very little is known about the organization of the E1 and E2 glycoproteins within the spike trimer. To gain a better understanding of how the proteins E1 and E2 are arranged in the virus membrane, we have used the techniques of limited proteolysis and amino acid chemical modification in combination with mass spectrometry. We have determined that at neutral pH the E1 protein regions that are accessible to proteases include domains 1-21 (region encompassing amino acids 1 to 21), 161-176, and 212-220, while the E2 regions that are accessible include domains 31-84, 134-148, 158-186, 231-260, 299-314, and 324-337. When Sindbis virus is exposed to low pH, E2 amino acid domains 99-102 and 262-309 became exposed while other domains became inaccessible. Many new E1 regions became accessible after exposure to low pH, including region 86-91, which is in the putative fusion domain of E1 of Semliki Forest virus (SFV) (M. C. Kielian et al., J. Cell Biol. 134:863-872, 1996). E1 273-287 and region 145-158 were also exposed at low pH. These data support a model for the structure of the alphavirus spike in which the E1 glycoproteins are centrally located as trimers which are surrounded and protected by the E2 glycoprotein. These data improve our understanding of the structure of the virus membrane and have implications for understanding the protein conformational changes which accompany the process of virus-cell membrane fusion.  相似文献   

8.
The purposes of this study were to establish the role of disulfide linkages in the secondary structure of apolipoprotein B, to investigate the effects of sulfhydryl blocking agents, denaturing agents, pH and storage on the conformation of apolipoprotein B and lipoprotein B, and to compare the conformation of water-soluble apolipoprotein B in the presence and absence of its lipids by using circular dichroism. Fresh lipoprotein B examined in Tris/EDTA at pH 9.0, 7.3 and 2.7 exhibited alpha-helical content of 24.4, 26.7 and 26.9%, and beta-pleated sheet 25.1, 15.4 and 18.0%, respectively. The carboxymethylated (CM-) lipoprotein B had similar alpha-helical contents, and lower contents of beta-sheets. Storage of lipoprotein B resulted in marked change of beta-sheets and gradual decrease in alpha-helical structure, in spite of the preventive measures taken for lipid peroxidation and proteolytic degradation. Exposure of apolipoprotein B to 6 M guanidine X HCl led to a complete disappearance of the alpha-helix with an increase in the beta-sheets to 35-40%, irrespective of the use of disulfide-reducing agents. By substituting 6 M urea for guanidine X HCl, the alpha-helical contents for both CM- and reduced CM-apolipoprotein B increased up to 7-9% with a concomitant decrease in beta-structure. When urea was replaced with aqueous buffers, these apolipoprotein B preparations regained their alpha-helical contents (25-27%) to the full extent originally present in the parent lipoprotein samples. No difference was observed between the secondary structure of CM- and reduced CM-apolipoprotein B. Furthermore, the conformation of apolipoprotein B did not vary with pH when pH was changed from 2.7 to 9.0. These results suggest that (1) the conformation of apolipoprotein B is more stable with respect to pH in the absence of lipids than in their presence, (2) intramolecular disulfide linkages play an insignificant role in the conformation of apolipoprotein B, and (3) the changes in alpha-helix structure of lipoprotein B or CM-lipoprotein B due to delipidization and denaturation are reversible.  相似文献   

9.
Interaction of Sindbis virus glycoproteins during morphogenesis.   总被引:14,自引:9,他引:5       下载免费PDF全文
In cells infected with the Sindbis temperature-sensitive mutants ts-23 and ts-10 (complementation group D), which contain a defect in the envelope glycoprotein E1, the precursor polypeptide PE2 is not cleaved to the envelope glycoprotein E2 at the nonpermissive temperature. This defect is phenotypically identical to the defect observed in the complementation group E mutant, ts-20. The lesion in ts-23 is reversible upon shift to permissive temperature, whereas that of ts-10 is not. Antiserum against whole virus, E1, or E2 also prevents the cleavage of PE2 in cells infected with wild-type Sindbis virus. Because the cleavage of PE2 is inhibited by the lesion in mutants that are genotypically distinct and by anti-E1 or -E2 serum, it appears that PE2 and E1 exist as a complex in the membrane of the infected cell.  相似文献   

10.
The Sindbis virus envelope is composed of 80 E1-E2 (envelope glycoprotein) heterotrimers organized into an icosahedral protein lattice with T=4 symmetry. The structural integrity of the envelope protein lattice is maintained by E1-E1 interactions which are stabilized by intramolecular disulfide bonds. Structural domains of the envelope proteins sustain the envelope's icosahedral lattice, while functional domains are responsible for virus attachment and membrane fusion. We have previously shown that within the mature Sindbis virus particle, the structural domains of the envelope proteins are significantly more resistant to the membrane-permeative, sulfhydryl-reducing agent dithiothreitol (DTT) than are the functional domains (R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have used DTT to probe the accessibility of intramolecular disulfides within PE2 (the precursor to E2) and E1, as these proteins fold and are assembled into the spike heterotrimer. We have determined through pulse-chase analysis that intramolecular disulfide bonds within PE2 are always sensitive to DTT when the glycoproteins are in the endoplasmic reticulum. The reduction of these disulfides results in the disruption of PE2-E1 associations. E1 acquires increased resistance to DTT as it folds through a series of disulfide intermediates (E1alpha, -beta, and -gamma) prior to assuming its native and most compact conformation (E1epsilon). The transition from a DTT-sensitive form into a form which exhibits increased resistance to DTT occurs after E1 has folded into its E1beta conformation and correlates temporally with the dissociation of BiP-E1 complexes and the formation of PE2-E1 heterotrimers. We propose that the disulfide bonds within E1 which stabilize the protein domains required for maintaining the structural integrity of the envelope protein lattice form early within the folding pathway of E1 and become inaccessible to DTT once the heterotrimer has formed.  相似文献   

11.
Maltase-glucoamylase, a microvillous membrane ectoenzyme, was solubilized from rat intestinal mucosa by digestion with papain and subsequently purified to homogeneity with an overall yield of 10--20%. An antibody to the purified enzyme formed a single precipitin line in immunodiffusion experiments with an intestinal homogenate. The enzyme was shown to be an acidic glycoprotein (20% sugar by weight) which contained low amounts of cysteine and no sialic acid. At pH3--6, maltase activity was slowly lost, but the enzyme was re-activated by re-adjustment of the pH to neutrality. However, in the presence of sodium dodecyl sulphate, acid pH values inactivated maltase irreversibly, and at the same time converted the enzyme (mol.wt. 500000 approx.) into five new species with apparent molecular weights ranging from 134000 to 480000 as judged by polyacrylamide-gel electrophoresis. The same five fragments were also formed by boiling the enzyme for brief periods in the presence of sodium dodecyl sulphate or urea either with or without reducing agents. The dissociated species were stable on re-electrophoresis, and amino acid analysis showed them to be very similar to each other and to the original enzyme. The bands migrated anomalously on polyacrylamide gels of different concentration, thereby preventing the assignment of precise molecular weights. It is possible that the five species may represent stable aggregates of a common monomer of the enzyme.  相似文献   

12.
Acidic pH-induced folding of annexin (Anx)VI in solution was investigated in order to study the mechanism of formation of ion channels by the protein in membranes. Using 2-(p-toluidino)naphthalene-6-sulfonic acid as a hydrophobic probe, it was demonstrated that AnxVI exerts a large change in hydrophobicity at acidic pH. Moreover, circular dichroism spectra indicated that the native state of AnxVI changes at acidic pH towards a state characterized by a significant loss of alpha-helix content and appearance of new beta-structures. These changes are reversible upon an increase of pH. It is postulated that the structural folding of AnxVI could explain how a soluble protein may undergo transition into a molecule able to penetrate the membrane hydrophobic region. The physiological significance of these observations is discussed.  相似文献   

13.
Ribosomes are dynamic complexes responsible for translating the genetic information encoded in mRNAs to proteins. The accuracy of this process is vital to the survival of an organism, and is often compromised by translational miscoding agents. Aminoglycosides are a group of miscoding agents that bind to the ribosome and reduce the fidelity of translation. Previous studies have shown that aminoglycosides alter the higher order structure of the ribosome. Here, we used a toeprinting assay to how that streptomycin, neomycin, kanamycin, gentamycin, and hygromycin B trigger conformational changes within Escherichia coli ribosome. Miscoding agents viomycin and 30% ethanol also cause similar structural changes within the ribosome. In contrast, antibiotics that do not cause miscoding, such as tetracycline, chloramphenicol, erythromycin, fusidic acid and spectinomycin, do not induce the conformational changes triggered by miscoding agents. Furthermore, ribosomes isolated from strains that are either streptomycin resistant or dependent for growth do not show these conformational changes in the presence of streptomycin. These results correlate structural changes in the ribosome induced by miscoding agents in vitro with their in vivo phenotype.  相似文献   

14.
It is widely held that the penetration of cells by alphaviruses is dependent on exposure to the acid environment of an endosome. The alphavirus Sindbis virus replicates in both vertebrate and invertebrate cell cultures. We have found that exposure to an acid environment may not be required for infection of cells of the insect host. In this work, we investigated the effects of two agents (NH(4)Cl and chloroquine), which raise the pH of intracellular compartments (lysosomotropic weak bases) on the infection and replication of Sindbis virus in cells of the insect host Aedes albopictus. The results show that both of these agents increase the pH of endosomes, as indicated by protection against diphtheria toxin intoxication. NH(4)Cl blocked the production of infectious virus and blocked virus RNA synthesis when added prior to infection. Chloroquine, in contrast to its effect on vertebrate cells, had no inhibitory effect on infectious virus production in mosquito cells even when added prior to infection. Treatment with NH(4)Cl did not prevent the penetration of virus RNA into the cell cytoplasm or translation of the RNA to produce a precursor to virus nonstructural proteins. These data suggest that while these two drugs raise the pH of endosomes, they do not block insect cell penetration. These data support previous results published by our laboratory suggesting that exposure to an acid environment within the cell may not be an obligatory step in the process of infection of cells by alphaviruses.  相似文献   

15.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

16.
The structures of two biologically different myelin proteins, A1 from the central nervous system and P2 from the peripheral nervous system, were investigated. Both proteins were isolated from nerve tissues. Conformational changes in the homogeneous proteins were examined in aqueous solutions by means of circular dichroism measurements. The secondary structures of both proteins proved to be very stable between pH 2.5 and pH 11.7. Unlike the P2 protein, the A1 protein is stable up to pH 13 without detectable conformational changes. The stereochemistry of the polypeptide chains of both proteins is markedly different in the presence of urea. While the value of theta222 for the A1 protein changes linearly with increasing urea concentration, a sigmoidal curve was obtained for the P2 protein. The observed differences in the dichroic properties of the basic myelin proteins A1 and P2 indicate the possibility of further structure - function correlations.  相似文献   

17.
Limited proteolysis, gel filtration, and circular dichroism have been used to identify at least three distinct conformational states of a proteolytic fragment containing the ligand-binding domain of the chicken receptor for endocytosis of glycoproteins. Differences in the ligand-binding activity of intact receptor brought about by changing Ca2+ concentrations and pH values can be correlated with different physical states of the binding domain present under similar conditions. An active, ligand-binding state can be detected at either pH 7.8 or 5.4, but 10-fold higher concentrations of Ca2+ are required to stabilize this state at the lower pH. In all cases, the dependence on Ca2+ concentration is second-order, suggesting that two Ca2+ ions are bound to each domain. These studies demonstrate an interdependence between the effects of Ca2+ concentration and pH on both ligand-binding activity and receptor conformation, which is important to consider when describing the binding and dissociation of ligand during endocytosis.  相似文献   

18.
We have investigated the conformational changes of Newcastle disease virus (NDV) glycoproteins in response to receptor binding, using 1,1-bis(4-anilino)naphthalene-5,5-disulfonic acid (bis-ANS) as a hydrophobicity-sensitive probe. Temperature- and pH-dependent conformational changes were detected in the presence of free bovine gangliosides. The fluorescence of bis-ANS was maximal at pH 5. The binding of bis-ANS to NDV was not affected by chemicals that denature the fusion glycoprotein, such as reducing agents, nor by the presence of neuraminidase inhibitors such as N-acetyl neuramicic acid. Gangliosides partially inhibited fusion and hemadsorption, but not neuraminidase hemagglutinin-neuraminidase glycoprotein (HN) activity. A conformational intermediate of HN, triggered by the presence of gangliosides acting as receptor mimics, was detected. Our results indicate that, upon binding to free gangliosides, HN undergoes a certain conformational change that does not affect the fusion glycoprotein.  相似文献   

19.
We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.  相似文献   

20.
Defective interfering particles of Sindbis virus contain 20S RNA identical to that found in BHK cells co-infected with standard and defective virions. We have characterized these RNAs by their oligonucleotide fingerprints. Most of the oligonucleotides were identical to those found in the mRNA (26S RNA) that codes for the virion structural proteins. Three oligonucleotides found in 20S RNA were absent from the 26S RNA pattern and may represent sequences from the 5' end of the virion RNA. Previous difficulties in describing the nature of the defective virion RNA were due to the aggregated state of the RNA. Nucleocapsids obtained from standard and defective virions were essentially the same size and had about the same density, suggesting that defective particles contain more than a single molecule of 20S RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号