首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural crystallography and nuclear magnetic resonance (NMR) spectroscopy are the predominant techniques for understanding the biological world on a molecular level. Crystallography is constrained by the ability to form a crystal that diffracts well and NMR is constrained to smaller proteins. Although powerful techniques, they leave many soluble, purified structurally uncharacterized protein samples. Small angle X-ray scattering (SAXS) is a solution technique that provides data on the size and multiple conformations of a sample, and can be used to reconstruct a low-resolution molecular envelope of a macromolecule. In this study, SAXS has been used in a high-throughput manner on a subset of 28 proteins, where structural information is available from crystallographic and/or NMR techniques. These crystallographic and NMR structures were used to validate the accuracy of molecular envelopes reconstructed from SAXS data on a statistical level, to compare and highlight complementary structural information that SAXS provides, and to leverage biological information derived by crystallographers and spectroscopists from their structures. All the ab initio molecular envelopes calculated from the SAXS data agree well with the available structural information. SAXS is a powerful albeit low-resolution technique that can provide additional structural information in a high-throughput and complementary manner to improve the functional interpretation of high-resolution structures.  相似文献   

2.
Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug–excipient relationships at the molecular level.  相似文献   

3.
Norneolambertellin (1) was isolated from a mycoparasite Lambertella sp. 1346. Combined analysis of the NMR spectra and chemical shift prediction based on molecular orbital calculation successfully revealed a novel pyrano[3,2-c]chromene-2,5-dione structure, which was further confirmed by X-ray crystallographic analysis. Isotopomer distribution analysis of the sample, prepared under labeling conditions, deduced its biosynthetic pathway.  相似文献   

4.
Mainly due to computational limitations, past protein molecular dynamics simulations have rarely been extended to 300 psec; we are not aware of any published results beyond 350 psec. The present work compares a 3000 psec simulation of the protein ubiquitin with the available x-ray crystallographic and solution NMR structures. Aside from experimental structure availability, ubiquitin was studied because of its relatively small size (76 amino acids) and lack of disulfide bridges. An implicit solvent model was used except for explicit treatment of waters of crystallization. We found that the simulated average structure retains most of the character of the starting x-ray crystal structure. In two highly surface accessible regions, the simulation was not in agreement with the x-ray structure. In addition, there are six backbone-backbone hydrogen bonds that are in conflict between the solution NMR and x-ray crystallographic structures; two are bonds that the NMR does not locate, and four are ones that the two methods disagree upon the donor. Concerning these six backbone-backbone hydrogen bonds, the present simulation agrees with the solution NMR structure in five out-of-the six cases, in that if a hydrogen bond is present in the x-ray structure and not in the NMR structure, the bond breaks within 700 psec. Of the two hydrogen bonds that are found in the NMR structure and not in the x-ray structure, one forms at 1400 psec and the other forms rarely. The present results suggest that relatively long molecular dynamics simulations, that use protein x-ray crystal coordinates for the starting structure and a computationally efficient solvent representation, may be used to gain an understanding of conformational and dynamic differences between the solid-crystal and dilute-solution states.  相似文献   

5.
The conformational analysis of an immunomodulating tetrapeptide rigin (H-Gly-Gln-Pro-Arg-OH), shown to possess diverse immunological activity, has been investigated both theoretically and experimentally for its conformational preferences. Unrestrained molecular dynamics simulation studies in implicit dimethylsulfoxide provide strong support for the existence of a significant population of ordered reverse turn structures for the major trans isomer. Of the three different energy minimized families, generated from computer molecular modelling, only one could be complemented by most of the 1D and 2D 1H NMR parameters obtained in dimethylsulfoxide-d6. A variable temperature NMR experiment in dimethylsulfoxide-d6 revealed that the preferred conformation is not stabilized by an intramolecular hydrogen bonding interaction. An analysis of the 2D ROESY experiment provides evidence in favour of an uncommonly observed, rather ill-defined type VII beta-turn structure. A survey of the observed specific inter-and intra-residue NOE connectivities and their comparison with one of the predicted low-energy conformations, demonstrates synergy between the theoretical molecular modelling and experimentally determined NMR spectral data. The primary structure, rather than long-range interactions, appears to be critical in determining the folding behaviour of the bio-active rigin. The present structural attributes may be valuable in peptide drug design and development of the rigin analogs having more effective stimulating activity.  相似文献   

6.
RADACK was conceived to simulate the radiation-induced attack to different DNA forms and complexes. It allows to separately calculate the probability of attack to each reactive atom of the sugar and of the base and takes into account the sequence-dependent structure of DNA as known from crystallographic or NMR studies or resulting from molecular modelling. The calculations are aimed to assess sequence-, structure- and ligand-dependent modulation of damages of sugar and bases, leading to single strand breaks (frank strand breaks, FSB) and alkali-labile base modifications (alkali-revealed breaks, ARB), respectively. The modelling procedure and the results of simulations for some representative structures (B, Z and quadruplex forms) are here described and discussed. The calculated relative probabilities of OH* radical attack to all reaction sites are compared to experimental FSB and ARB values. By a fitting procedure, the relative efficiencies of conversion of the C4' and C5'-centred radicals into FSB, epsilon (C4'): epsilon (C5'), and the relative efficiencies of base radicals- to- ARB conversion, epsilon(T) : epsilon(A) : epsilon(C) : epsilon(G), are then deduced for each DNA form. The ability of the model to account for the distribution of damages in DNA-ligand complexes is proven by its successful application to two DNA-protein systems : the lac repressor-lac operator complex and the nuclcosome core.  相似文献   

7.
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.  相似文献   

8.
A new malbrancheamide analogue, isomalbrancheamide B (3), along with three known compounds, malbrancheamide (1), isomalbrancheamide (2), and premalbrancheamide (4), were isolated in higher yields from the alkaloid fraction of the fungus Malbranchea aurantiaca. The interaction of the alkaloids 1-4 with calmodulin (CaM) was analyzed using different enzymatic, fluorescence, spectroscopic, nuclear magnetic resonance (NMR), and molecular modelling techniques. On the basis of the enzymatic and fluorescence experiments, malbrancheamides 1-3 are classical CaM inhibitors. Compound 4, however, did not quench the extrinsic fluorescence of the CaM biosensor indicating that it could be a functional inhibitor. Circular dichroism, NMR, and molecular modelling studies revealed that 1 binds to CaM in the same hydrophobic pocket than the chlorpromazine and trifluoperazine, two classical CaM inhibitors. Thus, malbrancheamide and related monochlorinated analogues are compounds with a high potential for the development of new therapeutic agents, involving CaM as their molecular target.  相似文献   

9.
Xanthenone based hydrazone derivatives (5a–n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a–n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.  相似文献   

10.
The preferred conformations and the complexional behaviour of mn-12S2O2 were studied by means of both NMR spectroscopy and molecular modelling. Furthermore, the AgI complexes of this ligand mn-12S2O2 were also studied by molecular mechanical calculations.  相似文献   

11.
A mimic of a (1-->2),(1-->6)-mannotrioside was synthesized by replacing the central mannose unit with an enantiomerically pure, conformationally stable trans-diaxial cyclohexanediol. The three-dimensional structure of the molecule was investigated by NMR spectroscopy supported by molecular modelling and was compared to the known features of the natural mannotrioside.  相似文献   

12.
Both the enantiomeric forms of DAU 5750, a novel muscarinic receptor antagonist, have been synthesized in order to assess the relevance of configurational/conformational features for high affinity binding to muscarinic receptor subtypes. The attribution of absolute stereochemistry and conformational analysis by means of molecular modelling and NMR techniques are also reported.  相似文献   

13.
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X‐ray crystallographic structure of higher plant PsbQ residues S14‐Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this “missing link”, we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N‐terminal residues 1–45 the solution structure deviates significantly from the X‐ray crystallographic one, while the four‐helix bundle core found previously is confirmed. A short α‐helix is observed in the solution structure at the location where a β‐strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N‐terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β‐strand are found. Proteins 2015; 83:1677–1686. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

14.
NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.  相似文献   

15.
Affinity chromatography has been extensively refined over the past few years to meet the more stringent criteria being placed on recombinant proteins as therapeutic products. New developments in the design of selective and stable ligands for affinity chromatography are establishing the technique as a routine tool in process-scale protein purification. Exploitation of sophisticated molecular modelling techniques in conjunction with binding and crystallographic studies has permitted the design of new, highly selective 'biomimetic' ligands for the target proteins.  相似文献   

16.
Application of a modified ePHOGSY and other novel NMR experiments to an H2O-DMSO solution of the protein FKBP12 identified the presence of one molecule of DMSO bound in the substrate binding site. It occupies the same spatial region occupied by the pipecolidine moiety of the immunosuppressive drugs FK506 and Rapamycin complexed to the protein. The binding constant KD for this DMSO molecule was only 275 mM. A substructure search of small molecules similar to DMSO resulted in the identification of molecules with improved binding affinity. This work represents a clear example of the powerful interplay of molecular modelling and NMR.  相似文献   

17.
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.  相似文献   

18.
Trigger factor (TF) is a multi-domain molecular chaperone that binds to the bacterial ribosome at the tunnel exit from which nascent polypeptides emerge. We present here the NMR assignments of the ribosome binding domain (RBD) of TF from Escherichia coli as a stable 26 kDa dimer, using conditions that are similar to a crystallographic study from which an X-ray crystal structure of the identical construct was determined.  相似文献   

19.
A quadruplex sequence from the promoter region of the c-KIT gene forms a stable quadruplex, as characterized by crystallographic and NMR methods. Two new crystal structures are reported here, together with molecular dynamics simulation studies on these quadruplex crystal structures and an NMR structure. The new crystal structures, each in a distinct space group and lattice packing arrangement, together with the existing structures, demonstrate that the c-KIT quadruplex fold does not change with differing environments, suggesting that quadruplex topological dynamism is not a general phenomenon. The single and dinucleotide loops in these structures show a high degree of conformational flexibility within the three crystal forms and the NMR ensemble, with no evidence of clustering to particular conformers. This is in accord with the findings of high loop flexibility from the molecular dynamics studies. It is suggested that intramolecular quadruplexes can be grouped into two broad classes (i) those with at least one single-nucleotide loop, often showing singular topologies even though loops are highly flexible, and (ii) with all loops comprising at least two nucleotides, leading to topological dynamism. The loops can have more stable and less dynamic base-stacked secondary structures.  相似文献   

20.
The binding to liver alcohol dehydrogenase of the inhibitor 2,4-(4-pyrazolyl)-butylisothiourea has been studied both by modelling experiments using computer graphics with interactive energy minimization and by X-ray crystallographic structure determination. For the modelling experiments, we used the program system TOM, which was developed in our laboratory as an extension of the program FRODO. Different strategies for using computer graphics with interactive energy minimization were tested. Two essentially different binding modes were found. One of these was favoured from energy minimizations using a potential energy function which was the sum of a Coulomb interaction term and two different van der Waals' interaction terms for non-bonded and torsional interactions. This binding mode was close to the crystallographic observed structure. The results show that flexibility of both ligand and receptor side-chains as well as main-chain conformations are important for docking to the active site of liver alcohol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号