首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose stem cells (ASCs) have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. In this study, ASCs were harvested from normal Sprague–Dawley (SD) rats and transfected by BMP-2 gene before they were loaded on alginate. The ability of bone regeneration was determined in rat critical-size cranial defects. An 8-mm diameter defect was created in the calvarias of 36 rats; these rats were divided into three groups. In experimental group, the defects were filled with alginate gel combined with BMP-2 transfected ASCs; in negative control group, the defects were filled with alginate gel mixed with normal ASCs; in blank controls, the defects were filled with cell-free alginate gel. Four rats of each group were killed and the cranial defect sites were observed at 4, 8 and 16 weeks after surgery. There was complete repair of cranial defects in experimental group using the alginate gel loading BMP-2 transfected ASC, but only partial repair in negative controls and in the blank control. The engineering approach combining BMP-2 enhanced ASCs with alginate gel can therefore stimulate bone regeneration and repair for the large size bone defects.  相似文献   

2.
To explore the potential of combined delivery of osteogenic and angiogenic factors to bone marrow stromal cells (BMSCs) for repair of critical-size bone defects, we followed the formation of bone and vessels in tissue-engineered constructs in nude mice and rabbit bone defects upon introducing different combinations of BMP-2, vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) to BMSCs with adenoviral vectors. Better osteogenesis and angiogenesis were found in co-delivery group of BMP-2, VEGF and angiopoietin-1 than any other combination of these factors in both animal models, indicating combined gene delivery of angiopoietin-1 and VEGF165 into a tissue-engineered construct produces an additive effect on BMP-2-induced osteogenesis.  相似文献   

3.
Bone quality as well as its quantity at the implant interface is responsible for determining stability of the implant system. The objective of this study is to examine the nanoindentation based elastic modulus (E) at different bone regions adjacent to titanium dental implants with guided bone regeneration (GBR) treated with DBM and BMP-2 during different post-implantation periods. Six adult male beagle dogs were used to create circumferential defects with buccal bone removal at each implantation site of mandibles. The implant systems were randomly assigned to only GBR (control), GBR with demineralized bone matrix (DBM), and GBR with DBM + recombinant human bone morphogenetic protein-2 (rhBMP-2) (BMP) groups. Three animals were sacrificed at each 4 and 8 weeks of post-implantation healing periods. Following buccolingual dissection, the E values were assessed at the defects (Defect), interfacial bone tissue adjacent to the implant (Interface), and pre-existing bone tissue away from the implant (Pre-existing). The E values of BMP group had significantly higher than control and DBM groups for interface and defect regions at 4 weeks of post-implantation period and for the defect region at 8 weeks (p < 0.043). DBM group had higher E values than control group only for the defect region at 4 weeks (p < 0.001). The current results indicate that treatment of rhBMP-2 with GBR accelerates bone tissue mineralization for longer healing period because the GBR likely facilitates a microenvironment to provide more metabolites with open space of the defect region surrounding the implant.  相似文献   

4.
AIM: To determine the effects of transplanting osteogenic matrix cell sheets and beta-tricalcium phosphate (TCP) constructs on bone formation in bone defects.METHODS: Osteogenic matrix cell sheets were prepared from bone marrow stromal cells (BMSCs), and a porous TCP ceramic was used as a scaffold. Three experimental groups were prepared, comprised of TCP scaffolds (1) seeded with BMSCs; (2) wrapped with osteogenic matrix cell sheets; or (3) both. Constructs were implanted into a femoral defect model in rats and bone growth was evaluated by radiography, histology, biochemistry, and mechanical testing after 8 wk.RESULTS: In bone defects, constructs implanted with cell sheets showed callus formation with segmental or continuous bone formation at 8 wk, in contrast to TCP seeded with BMSCs, which resulted in bone non-union. Wrapping TCP constructs with osteogenic matrix cell sheets increased their osteogenic potential and resulting bone formation, compared with conventional bone tissue engineering TCP scaffolds seeded with BMSCs. The compressive stiffness (mean ± SD) values were 225.0 ± 95.7, 30.0 ± 11.5, and 26.3 ± 10.6 MPa for BMSC/TCP/Sheet constructs with continuous bone formation, BMSC/TCP/Sheet constructs with segmental bone formation, and BMSC/TCP constructs, respectively. The compressive stiffness of BMSC/TCP/Sheet constructs with continuous bone formation was significantly higher than those with segmental bone formation and BMSC/TCP constructs.CONCLUSION: This technique is an improvement over current methods, such as TCP substitution, and is useful for hard tissue reconstruction and inducing earlier bone union in defects.  相似文献   

5.
The aim of this study was to determine the feasibility of adenoviral gene transfer into primary human bone marrow osteoprogenitor cells in combination with biodegradeable scaffolds to tissue-engineer bone. Osteoprogenitors were infected with AxCAOBMP-2, a vector carrying the human BMP-2 gene. Alkaline phosphatase activity was induced in C2C12 cells following culture with conditioned media from BMP-2 expressing cells, confirming successful secretion of active BMP-2. Expression of alkaline phosphatase activity, type I collagen and mineralisation confirmed bone cell differentiation and maintenance of the osteoblast phenotype in extended culture for up to 6 weeks on PLGA porous scaffolds. In vivo implantation of adenoviral osteoprogenitor constructs on PLGA biodegradeable scaffolds, using diffusion chambers, also demonstrated bone cell differentiation and production of bone tissue. The maintenance of the osteoblast phenotype in extended culture and generation of mineralised 3-D scaffolds containing such constructs indicate the potential of such bone tissue engineering approaches in bone repair.  相似文献   

6.
This study was performed to determine if a combination of previously undifferentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and exogenous bone morphogenetic protein-2 (BMP-2) delivered via heparin-conjugated PLGA nanoparticles (HCPNs) would extensively regenerate bone in vivo. In vitro testing found that the HCPNs were able to release BMP-2 over a 2-week period. Human BMMSCs cultured in medium containing BMP-2-loaded HCPNs for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OCN) mRNA, while cells without BMP-2 expressed only ALP. In vivo testing found that undifferentiated BMMSCs with BMP-2-loaded HCPNs induce far more extensive bone formation than either implantation of BMP-2-loaded HCPNs or osteogenically differentiated BMMSCs. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of undifferentiated BMMSCs and BMP-2 delivery via HCPNs. Sung Eun Kim and Oju Jeon equally contributed to this work  相似文献   

7.
Yang M  Ma QJ  Dang GT  Ma Kt  Chen P  Zhou CY 《Cytotherapy》2005,7(3):273-281
BACKGROUND: Adipose-derived adult stem (ADAS) cells are multipotent cells capable of differentiating into osteoblasts, adipocytes and chondrocytes. The aim of this study was to determine whether BMP-7-expressing ADAS cells would elicit bone formation invitro and in vivo. METHODS: ADAS cells were harvested from Lewis rats and transduced with adenovirus carrying the recombinant human bone morphogenetic protein-7 (Ad-BMP-7) gene. Untransduced cells and cells transduced with adenovirus carrying the enhanced green fluorescence protein (Ad-EGFP) gene served as controls. BMP-7 expression was assessed by RT-PCR, immunofluorescence on day 1, and Western blot on days 4, 8 and 12. Alkaline phosphatase (ALP) activity was assayed on days 2, 4, 6, 8, 10 and 12. Osteocalcin production and bone nodule formation were detected by immunohistochemistry and von Kossa stain on day 12. A total of 1 x 10(6) cells mixed with type I collagen were implanted into the subcutaneous pocket in Lewis rat and subjected to histologic analysis 1, 2 and 4 weeks post-implantation. RESULTS: The Ad-BMP-7-transduced ADAS cells expressed BMP-7 at both mRNA and protein levels. ALP activity was detected in Ad-BMP-7-transduced cells from day 2 to day 12, peaking on day 8. Osteocalcin production and matrix mineralization further confirmed that these cells differentiated into osteoblasts and induced bone formation in vitro. Histologic examination revealed that implantation of BMP-7-expressing ADAS cells could induce new bone formation in vivo. DISCUSSION: ADAS cells would be a promising source of adult autologous stem cells for BMP gene therapy and tissue engineering.  相似文献   

8.
目的构建hBMP2真核表达载体pcDNA3-hBMP2,将其转染兔骨髓基质细胞(Marrow Stromal Cells,MSCs)并检测其表达效率。方法将hBMP2的cDNA构建于真核表达载体pcDNA3,形成重组真核表达载体pcDNA3-hBMP2,酶切鉴定后体外转染培养状态下的兔骨髓基质细胞,用原位杂交和免疫组织化学方法鉴定表达情况并用计算机图像分析系统测定其表达效率。结果pcDNA3-hBMP2载体酶切鉴定与预期片段相符,表明成功构建了pcDNA3-hBMP2转基因载体。用该载体转染兔骨髓基质细胞后获得了瞬时表达和稳定表达。结论载体pcDNA3-hBMP2可以在骨髓基质细胞中表达,为下一步将其用于转基因骨组织工程研究奠定基础。  相似文献   

9.
We have hypothesized that human bone marrow-derived mesenchymal stem cells (BMMSCs), that are not osteogenically differentiated prior to implantation, would regenerate bone extensively in vivo once exogenous bone morphogenetic protein-2 (BMP-2) was delivered to the implantation site. BMP-2 released from heparin-conjugated poly(lactic-co-glycolic acid) (HCPLGA) scaffolds stimulates osteogenic differentiation of cultured BMMSCs. Upon implantation, undifferentiated BMMSCs on BMP-2-loaded HCPLGA scaffolds induce far more extensive bone formation than either undifferentiated BMMSCs or osteogenically differentiated BMMSCs on HCPLGA scaffolds. These BMP-2-loaded HCPLGA scaffolds could prove invaluable for in vivo regeneration of bone from undifferentiated human BMMSCs.  相似文献   

10.
In therapeutic bone repairs, autologous bone grafts, conventional or vascularized allografts, and biocompatible artificial bone substitutes all have their shortcomings. The bone formed from peptides [recombinant human bone morphogenetic proteins (BMPs)], demineralized bone powder, or a combination of both is small in size. Tissue engineering may be an alternative for cranial bone repair. In this study, the authors developed an animal model to test the hypothesis that replication-defective, adenovirus-mediated human BMP-2 gene transfer to bone marrow stromal cells enhances the autologous bone formation for repairing a critical-size craniofacial defect. The mesenchymal stromal cells of miniature swine were separated from the iliac crest aspirate and expanded in monolayer culture 1 month before implantation. The cultured mesenchymal stromal cells were infected with recombinant, replication-defective human adenovirus BMP-2, 7 days before implantation. Bilateral 2 x 5-cm2 cranial defects were created, leaving no osteogenic periosteum and dura behind. Mesenchymal stromal cells at 5 x 10(7)/ml were mixed with collagen type I to form mesenchymal stromal cell/polymer constructs. Mesenchymal stromal cells used for the control site were infected with adenovirus beta-Gal under the same conditions. After 6 weeks and 3 months, 10 miniature swine were euthanized and the cranium repair was examined. Near-complete repair of the critical-size cranial defect by tissue-engineered mesenchymal stromal cell/collagen type I construct was observed. The new bone formation area (in square centimeters) measured by three-dimensional computed tomography demonstrated that the improvement from 6 weeks to 3 months was significantly greater on the experimental side than on the control side (2.15 cm2 versus 0.54 cm2, p < 0.001) and significantly greater at 3 months than at 6 weeks (2.13 cm2 versus 0.52 cm2, p < 0.001). The difference between the experimental and control groups was significant at 3 months (mean difference, 2.13 cm2; p < 0.001). The maximal compressive strength of the new bone was similar to that of the normal cranial bone when evaluated by biomechanical testing (cranium bone versus tissue-engineered bone, 88.646 +/- 5.121 MPa versus 80.536 +/- 19.302 MPa; p = 0.227). Adenovirus was absent from all constructs by immunochemical staining at 6 weeks and 3 months after implantation. The successful repair of cranial defects in this experiment demonstrates the efficacy of the integration of the autologous stem cell concept, gene medicine, and polymers in producing tissue-engineered bone.  相似文献   

11.
Background aimsMesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue–derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear.MethodsThe authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo.ResultsOsteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs.ConclusionsDFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.  相似文献   

12.
Expression of bone morphogenetic proteins during membranous bone healing   总被引:16,自引:0,他引:16  
For the reconstructive plastic surgeon, knowledge of the molecular biology underlying membranous fracture healing is becoming increasingly vital. Understanding the complex patterns of gene expression manifested during the course of membranous fracture repair will be crucial to designing therapies that augment poor fracture healing or that expedite normal osseous repair by strategic manipulation of the normal course of gene expression. In the current study, we present a rat model of membranous bone repair. This model has great utility because of its technical simplicity, reproducibility, and relatively low cost. Furthermore, it is a powerful tool for analysis of the molecular regulation of membranous bone repair by immunolocalization and/or in situ hybridization techniques. In this study, an osteotomy was made within the caudal half of the hemimandible, thus producing a stable bone defect without the need for external or internal fixation. The healing process was then catalogued histologically in 28 Sprague-Dawley rats that were serially killed at 1, 2, 3, 4, 5, 6, and 8 weeks after operation. Furthermore, using this novel model, we analyzed, within the context of membranous bone healing, the temporal and spatial expression patterns of several members of the bone morphogenetic protein (BMP) family, known to be critical regulators of cells of osteoblast lineage. Our data suggest that BMP-2/-4 and BMP-7, also known as osteogenic protein-1 (OP-1), are expressed by osteoblasts, osteoclasts, and other more primitive mesenchymal cells within the fracture callus during the early stages of membranous fracture healing. These proteins continue to be expressed during the process of bone remodeling, albeit less prominently. The return of BMP-2/-4 and OP-1 immunostaining to baseline intensity coincides with the histological appearance of mature lamellar bone. Taken together, these data underscore the potentially important regulatory role played by the bone morphogenetic proteins in the process of membranous bone repair.  相似文献   

13.

Critical-sized bone defects are critical healing conditions that, if left untreated, often lead to non-unions. To reduce the risk, critical-sized bone defects are often treated with recombinant human BMP-2. Although enhanced bone tissue formation is observed when BMP-2 is administered locally to the defect, spatial and temporal distribution of callus tissue often differs from that found during regular bone healing or in defects treated differently. How this altered tissue patterning due to BMP-2 treatment is linked to mechano-biological principles at the cellular scale remains largely unknown. In this study, the mechano-biological regulation of BMP-2-treated critical-sized bone defect healing was investigated using a multiphysics multiscale in silico approach. Finite element and agent-based modeling techniques were combined to simulate healing within a critical-sized bone defect (5 mm) in a rat femur. Computer model predictions were compared to in vivo microCT data outcome of bone tissue patterning at 2, 4, and 6 weeks postoperation. In vivo, BMP-2 treatment led to complete healing through periosteal bone bridging already after 2 weeks postoperation. Computer model simulations showed that the BMP-2 specific tissue patterning can be explained by the migration of mesenchymal stromal cells to regions with a specific concentration of BMP-2 (chemotaxis). This study shows how computational modeling can help us to further understand the mechanisms behind treatment effects on compromised healing conditions as well as to optimize future treatment strategies.

  相似文献   

14.
15.
Although recombinant human bone morphogenetic proteins (BMPs) are used locally for treating bone defects in humans, their systemic effect on bone augmentation has not been explored. We have previously demonstrated that demineralized bone (DB) from ovariectomized (OVX) rats cannot induce bone formation when implanted ectopically at the subcutaneous site. Here we showed in vitro that 17beta-estradiol (E2) specifically induced expression of Bmp6 mRNA in MC3T3-E1 preosteoblastic cells and that bone extracts from OVX rats lack BMPs. Next we demonstrated that 125I-BMP-6 administered systemically accumulated in the skeleton and also restored the osteoinductive capacity of ectopically implanted DB from OVX rats. BMP-6 applied systemically to aged OVX rats significantly increased bone volume and mechanical characteristics of both the trabecular and cortical bone, the osteoblast surface, serum osteocalcin and osteoprotegerin levels, and decreased the osteoclast surface, serum C-telopeptide, and interleukin-6. E2 was significantly less effective, and was not synergistic with BMP-6. Animals that discontinued BMP-6 therapy maintained bone mineral density gains for another 12 weeks. BMP-6 increased in vivo the bone expression of Acvr-1, Bmpr1b, Smad5, alkaline phosphatase, and collagen type I and decreased expression of Bmp3 and BMP antagonists, chordin and cerberus. These results show, for the first time, that systemically administered BMP-6 restores the bone inductive capacity, microarchitecture, and quality of the skeleton in osteoporotic rats.  相似文献   

16.
摘要 目的:研究国产多孔钽材料能否在兔胫骨缺损模型中顺利实现骨长入,用于修复胫骨缺损。方法:在36只新西兰大白兔双侧胫骨骨干处建立骨缺损模型,每只动物左右侧缺损随机分组,分别进入实验组(植入多孔坦材料)和对照组(不植入多孔坦材料)。植入后4周、8周和12周取材,通过X线检测以及硬组织切片苏木精伊红染色,检测多孔钽材料与骨界面的骨整合情况。采用推出实验检测多孔钽材料与骨界面的结合强度。结果:将术后不同时间点取得的胫骨标本作X射线拍片分析,4周时,骨缺损端与材料结合部位有骨质生成,在8周时材料表面有骨形成现象,逐渐完全覆盖材料表面,在12周时骨量继续增加,形成覆盖材料并桥接骨缺损断端的骨痂。样本行硬组织切片并行HE染色后检测,植入4周后实验组材料两端被新生骨所覆盖,材料深部的孔隙中也可见少量骨组织长入;植入8周后发现实验组材料与骨组织生长良好,多孔钽材料表面和两端材料孔隙内均有骨组织长入,材料孔隙与组织紧密连接,有骨小梁长入;植入12周时两端骨组织长入深度没有明显变化,但材料表面骨组织继续长入,并完全嵌入圆柱体材料内。材料植入后4周与8周比较差异无统计学意义(P>0.05),材料植入后8周与12周比较差异有统计学意义(P<0.05)。将植入4周、8周和12周后含材料样本置于动态疲劳试验机上进行推出实验,随时间延长所需推出力明显增加,植入后4周和8周相比,虽然后者所需推力较大,但两者比较差异无统计学意义(P>0.05),而8周和12周比较则差异有统计学意义(P<0.05)。结论:国产多孔坦材料能在胫骨缺损中实现与骨整合,能用于皮质骨缺损修复。  相似文献   

17.
摘要 目的:探讨应用全骨髓贴壁法体外分离培养SD大鼠骨髓间充质干细胞(BMSCs)的可行性,研究其生物学特性,为骨组织工程提供种子细胞。方法:取SPF级5周龄健康SD大鼠2只,脱颈处死,分离双下肢股骨、胫骨,全骨髓贴壁法分离培养、纯化BMSCs;通过倒置显微镜观察原代、传代细胞生长情况、绘制生长、贴壁率曲线,研究其生物学特性;流式细胞仪检测表面标志物、诱导成成骨等方法进行鉴定。结果:应用全骨髓贴壁法可在体外分离出活性好、纯度高的BMSCs。倒置显微镜下可见原代细胞呈梭形、多角形,传代细胞形态均一呈纤维样;P3代BMSCs经流式细胞鉴定:CD44、CD90高表达,CD31、CD45低表达;定向诱导向成骨细胞分化,可见明显矿化结节。结论:证实应用全骨髓贴壁培养法体外可成功分离BMSCs,所分离培养、纯化的细胞生物学稳定,纯度高、活性好,具有多向分化潜能,能为骨组织工程、骨质疏松症和骨折不愈合疾病的研究提供种子细胞。  相似文献   

18.
19.

Introduction

Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM).

Materials and Methods

The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5).

Results

PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups.

Conclusion

Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.  相似文献   

20.
The design of bioactive three-dimensional (3D) scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2) influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs) was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs) and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号