首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the repeating unit of the O-specific polysaccharide from the lipopolysaccharide of the enterobacterium Raoultella terrigena was determined by means of chemical and spectroscopical methods and was found to be a linear tetrasaccharide containing a cyclic acetal of pyruvic acid (Pyr) as depicted below.[Carbohydrate structure: see text].  相似文献   

2.
An O-specific polysaccharide containing D-galactose and D-glucose, was isolated from the water-soluble lipopolysaccharide fraction of the alkaliphilic bacterium Halomonas magadii. The structure, determined by means of chemical analysis and 1D and 2D NMR spectroscopy, showed a trisaccharide repeating unit, as shown below: [structure: see text]  相似文献   

3.
A sharply defined white line in vitro forms between the pathogenic form of Pseudomonas tolaasii and another Pseudomonas bacterium, referred to as "reactans". This interaction has been considered as highly specific. However, results presented in this study rise doubt about the strict specificity of this interaction, as some other pseudomonads, associated with the cultivated mushroom Agaricus bisporus, also yielded a white line precipitate when they were streaked towards Pseudomonas tolaasii LMG 2342T. Moreover, some Finnish isolates inducing brown blotch symptoms on mushrooms like P. tolaasii(T), produced a typical white precipitate when streaked towards P. "reactans" LMG5329, even though phenotypical and genotypical features exclude these isolates from the species P. tolaasii. We propose that the white-line-in-agar (WLA) test should no longer be considered as an unequivocal diagnostic trait of P. tolaasii.  相似文献   

4.
5.
The O-specific polysaccharide obtained by mild-acid degradation of lipopolysaccharide of Aeromonas bestiarum P1S was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy. The sequence of the sugar residues was determined using 1H,1H NOESY and 1H,13C HMBC experiments. The O-specific polysaccharide was found to be a high-molecular-mass polysaccharide composed of tetrasaccharide repeating units of the structureSince small amounts of a terminal Quip3N residue were identified in methylation analysis, it was assumed that the elucidated structure also represented the biological repeating unit of the O-specific polysaccharide.  相似文献   

6.
A minor oligosaccharide fraction was isolated after complete de-acylation of the lipooligosaccharide extracted from Pseudomonas stutzeri OX1. The full structure of this oligosaccharide was obtained by chemical degradation, NMR spectroscopy and MALDI-TOF MS spectrometry. These experiments showed the presence of two novel oligosaccharides (OS1 and OS2): [structure: see text] where R=(S)-Pyr(-->4,6) in OS1 and alpha-Rha-(1-->3) in OS2. All sugars are D-pyranoses, except Rha, which is L-pyranose. Hep is L-glycero-D-manno-heptose, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, Pyr is pyruvic acid, P is phosphate.  相似文献   

7.
A neutral O-specific polysaccharide containing d-mannose, d-rhamnose and d-galactose was obtained by mild acid hydrolysis of the lipopolysaccharide of the plant pathogenic bacterium Burkholderia gladioli pv. agaricicola. By means of compositional analyses and NMR spectroscopy, the chemical repeating unit of the polymer was identified as a linear trisaccharide of the structure shown below, in which the mannose residue was quantitatively acetylated at C-2. [carbohydrate structure: see text]  相似文献   

8.
Extraction of dry bacteria of Acinetobacter baumannii strain 24 by phenol-water yielded a lipopolysaccharide (LPS) that was studied by serological methods and fatty acid analysis. After immunisation of BALB/c mice with this strain, monoclonal antibody S48-3-13 (IgG(3) isotype) was obtained, which reacted with the LPS in western blot and characterized it as S-form LPS. Degradation of the LPS in aqueous 1% acetic acid followed by GPC gave the O-antigenic polysaccharide, whose structure was determined by compositional analyses and NMR spectroscopy of the polysaccharide and O-deacylated polysaccharide as [carbohydrate structure: see text] where QuiN4N is 2,4-diamino-2,4,6-trideoxyglucose and GalNAcA 2-acetamido-2-deoxygalacturonic acid. The amino group at C-4 of the QuipN4N residues is acetylated in about 2/3 of LPS molecules and (S)-3-hydroxybutyrylated in the rest.  相似文献   

9.
The complete structure of the O-specific polysaccharide of the lipopolysaccharide isolated from the cultivated mushrooms pathogen Pseudomonas tolaasii is described. The structural determination, achieved by chemical and spectroscopical analyses, indicates a novel tetrasaccharide repeating unit built up of two units of 2-acetamido-2,6-di-deoxy-glucopyranose (Quinovosamine, QuipNAc) and two units of 2-acetamido-2-deoxy-gulopyranuronamide (GulpNAcAN), one of which is acetylated at C-3 position:  相似文献   

10.
11.
The lipopolysaccharide (LPS) of a wbjE mutant of Pseudomonas aeruginosa PA103, a serogroup O11 strain consists of both high and low molecular weight (HMW and LMW) LPSs. The HMW LPS consisted exclusively of rhamnan A-band LPS and no B-band LPS was detected in the wbjE mutant. Interestingly, the LMW LPS from the wbjE mutant showed that it contained a variety of oligosaccharides, each with two or three phosphate groups present as mono- or pyrophosphates. These oligosaccharides consisted of the complete core octasaccharide. The GalN residue was present as an N-acetylated residue in all of these oligosaccharides except the tetrasaccharide in which it is present as an N-alanylated residue. None of these oligosaccharides contained either a d- or l-FucpNAc residue. These results are discussed with regard to the role of wbjE in the biosynthesis of P. aeruginosa PA103 B-band LPS.  相似文献   

12.
The chemical structure of lipid A from the lipopolysaccharide of the mushroom-associated bacterium Pseudomonas reactans, a pathogen of cultivated mushroom, was elucidated by compositional analysis and spectroscopic methods (MALDI-TOF and two-dimensional NMR). The sugar backbone was composed of the beta-(1'-->6)-linked d-glucosamine disaccharide 1-phosphate. The lipid A fraction showed remarkable heterogeneity with respect to the fatty acid and phosphate composition. The major species are hexacylated and pentacylated lipid A, bearing the (R)-3-hydroxydodecanoic acid [C12:0 (3OH)] in amide linkage and a (R)-3-hydroxydecanoic [C10:0 (3OH)] in ester linkage while the secondary fatty acids are present as C12:0 and/or C12:0 (2-OH). A nonstoichiometric phosphate substitution at position C-4' of the distal 2-deoxy-2-amino-glucose was detected. Interestingly, the pentacyl lipid A is lacking a primary fatty acid, namely the C10:0 (3-OH) at position C-3'. The potential biological meaning of this peculiar lipid A is also discussed.  相似文献   

13.
Pier GB 《Carbohydrate research》2003,338(23):2549-2556
Antibodies directed to the Pseudomonas aeruginosa lipopolysaccharide (LPS) O-antigens have clearly shown to mediate the most effective immunity to infection caused by LPS-smooth strains. Such strains are major causes of disease in immunocompromised hosts such as burn or cancer patients, individuals in intensive care units, and those who utilize extended-wear contact lenses. Yet producing an effective vaccine composed of non-toxic, immunogenic polysaccharides has been challenging. The chemical diversity among the different O-antigens representative of the 20 major serotypes, plus additional diversity among some O-antigens representing variant subtype antigens, translates into a large degree of serologic variability that increases the complexity of O-antigen specific vaccines. Further complications come from the poor immunogenicity of the major protective epitope expressed by some O-antigens, and a large degree of diversity in animal responses that preclude predicting the optimal vaccine formulation from such studies. Nonetheless human trials over the years of vaccines eliciting O-antigen immunity have been encouraging, though no vaccine has yet been fully evaluated and found to be clinically efficacious. Newer vaccine approaches such as using polysaccharide-protein conjugates and passive therapy with monoclonal or polyclonal immune sera offer some additional means to try and produce an effective immunotherapeutic reagent for this problematic pathogen.  相似文献   

14.
Preliminary results on the structure of a novel sugar from a lipopolysaccharide from Pseudomonas corrugata, a plant pathogenic bacterium whose several aspects of phytopathogenic mechanism are under investigation, are described. This is a 5,7-diamino-5,7,9-trideoxynon-2-ulosonic acid, isolated as an O-glycoside from the Smith degradation of the O-chain. The structure was obtained both with NMR and MS methodologies. To the best of our knowledge, this is the first example of 3-hydroxylated non-2-ulosonic acid.  相似文献   

15.
A novel O-specific polysaccharide containing 3-acetamido-3-deoxy-alpha-D-fucose (Fuc3NAc) and D-rhamnose was isolated from the phenol-soluble lipopolysaccharide fraction of the plant associated bacterium Xanthomonas campestris strain 8004. The structure, determined by means of chemical analysis and 1D and 2D NMR spectroscopy, showed a branched trisaccharide repeating unit, as shown below: [formula: see text].  相似文献   

16.
The lipopolysaccharide (LPS) of a galU mutant of Pseudomonas aeruginosa PA103, a serogroup O11 strain, was sequentially extracted with phenol–chloroform–petroleum ether (PCP) followed by hot phenol–water extraction of the bacterial pellet remaining after PCP extraction. LPS was found in both the PCP extract as well as in the water phase of the hot phenol–water extract. Analysis of the carbohydrate portion released by mild acid hydrolysis of both LPS preparations, both before and after removal of all phosphate groups by treatment with aqueous HF, was performed by glycosyl composition and linkage analyses as well as by NMR and mass spectrometric analyses. The results showed that the carbohydrate portion of these two LPS extracts contained the same structure: namely, -GalN(Ala)-(1→3)--(7-Cm)HepII-(1→3)--HepI-(1→5)--Kdo-(2→. The oligosaccharide preparation from PCP-extracted LPS consisted of a variety of structures containing up to six phosphate groups present as mono-, pyro-, and possibly triphosphate, primarily located on the HepI residue with some molecules having a monophosphate on HepII. The oligosaccharide preparation from the hot phenol–water-extracted LPS contained a similar variety of structures, but with an additional structure in which HepI contained a PPEA group at O-2. In addition, PAGE immunoblot analysis of the crude cellular extract with anti-A-antibodies revealed the presence of A-band material in both PA103 and the galU mutant. The A-band material was purified and characterized by glycosyl composition and linkage analyses, as well as by NMR spectroscopy, which confirmed that the A-band rhamnan polysaccharide was present but not as typical LPS since lipid-A or LPS core oligosaccharide components were not detected.  相似文献   

17.
A neutral O-specific polysaccharide consisting of d-rhamnose was obtained by mild acid hydrolysis of the lipopolysaccharide of the plant pathogenic bacterium Pantoea agglomerans strain FL1, a common epiphyte of many plant species, and associated with Pseudomonas savastanoi pv. savastanoi in young and apparently intact olive knots. By means of compositional and methylation analyses, and NMR spectroscopy, the chemical repeating unit of the polymer was identified as a linear tetrasaccharide of the structure:  相似文献   

18.
An acidic O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Proteus mirabilis CCUG 10701 (OB) and studied by chemical analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: --> 3)-beta-D-GlcpNAc6Ac-(1 --> 2)-beta-D-GalpA4Ac-(1--> 3)-alpha-D-GalpNAc-(1 --> 4)-alpha-D-GalpA-(1 -->, where the degree of O-acetylation at position 6 of GlcNAc is approximately 50% and at position 4 of beta-GalA approximately 60%. Based on the unique structure of the O-polysaccharide and serological data, it is proposed to classify P. mirabilis CCUG 10701 (OB) into a new Proteus serogroup, O74.  相似文献   

19.
The O-polysaccharide from the lipopolysaccharide of the phytopathogenic bacterium Pseudomonas syringae pv. mori NCPPB 1656 was studied by sugar analysis along with 1H and 13C NMR spectroscopy and found to be a new beta-(1-->2)-linked homopolymer of L-rhamnose.  相似文献   

20.
Pseudomonas chlororaphis subsp. aureofaciens strain M71 was isolated from the root of a tomato plant and it was able to control in vivo Fusarium oxysporum f. sp. radicis-lycopersici responsible for the tomato crown and root rot. Recently, strain M71 was evaluated even for its efficacy in controlling Seiridium cardinale, the causal agent of bark canker of common cypress (Cupressus sempervirens L.). Strain M71 ability to persist on the tomato rhizosphere and on the aerial part of cypress plants could be related to the nature of the lipopolysaccharides (LPS) present on the outer membrane and in particular to the O-specific polysaccharide.A neutral O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide from P. chlororaphis subsp. aureofaciens strain M71. By means of compositional analyses and NMR spectroscopy, the chemical repeating unit of the polymer was identified as the following linear trisaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号