首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some biochemical properties of rice endophytic diazotrophic bacteria N1 ( Bacillus pumilus), N2 ( Enterobacter cloacae) and N3 ( Enterococcus gallinarum) were characterized in this study. The plasmids harboring the reporter gene lacZ fused to the promoters of nifH and nifHDK, and the reporter gene gfp as well, were first transformed into rice endophytic diazotrophic bacteria respectively through triparental mating. After the conjugated bacteria were inoculated into tobacco Yunyan 85 and maize Jitian 6, the staining of β-galactosidase was carried out on the tobacco and maize roots and the observation was made under the confocal laser scanning microscope, transmission electron microscope and scanning electron microscope. The results showed that the rice endophytic diazotrophic bacteria were not only present in epidermal cells, cortex cells and intercellular spaces of tobacco and maize roots, but also found in vascular tissue cells of maize stem also, indicating that the bacteria had migrated from the roots into the stem. Data showed that the the fresh weight of maize plants inoculated with rice endophytic diazotrophic bacteria N3 was 18.52% more than that of the control.  相似文献   

2.
Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified nitrogenase gene (nifH) fragments is a rapid technique for profiling of diazotrophic microbial communities without the necessity of cultures for study. Here, we examined the impact of N-fertilization, plant genotype and environmental conditions on diazotrophic microbial populations in association with roots of rice (Oryza species) by T-RFLP community profiling and found marked effects on the composition of the microbial community. We found a rapid change of the diazotrophic population structure within 15 days after application of nitrogen fertilizer and a strong effect of environmental conditions and plant genotype. Control experiments revealed that phylogenetically distantly related nifH genes were proportionately amplified, and that signal strength reflected the relative abundance of nifH genes in the sample within a 10-fold range of template concentrations. These results clearly demonstrated that our T-RFLP method was suitable to reflect compositional differences in the diazotrophic community in a semiquantitative manner and that the diazotrophic rhizosphere communities of rice are not static but presumably rather highly dynamic.  相似文献   

3.
Several diazotrophic species of Azoarcus spp. occur as endophytes in the pioneer plant Kallar grass. The purpose of this study was to screen Asian wild rice and cultivated Oryza sativa varieties for natural association with these endophytes. Populations of culturable diazotrophs in surface-sterilized roots were characterized by 16S rDNA sequence analysis, and Azoarcus species were identified by genomic fingerprints. A. indigens and Azoarcus sp. group C were detected only rarely, whereas Azoarcus sp. group D occurred frequently in samples of flooded plants: in 75% of wild rice, 80% of land races of O. sativa from Nepal and 33% of modern cultivars from Nepal and Italy. The putatively endophytic populations of diazotrophs differed with the rice genotype. The diversity of cultured diazotrophs was significantly lower in wild rice species than in modern cultivars. In Oryza officinalis (from Nepal) and O. minuta (from the Philippines), Azoarcus sp. group D were the predominant diazotrophic putative endophytes in roots. In contrast, their number was significantly lower in modern cultivars of O. sativa, whereas numbers and diversity of other diazotrophs, such as Azospirillum spp., Klebsiella sp., Sphingomonas paucimobilis, Burkholderia sp. and Azorhizobium caulinodans, were increased. In land races of O. sativa, the diazotrophic diversity was equally high; however, Azoarcus sp. was found in high apparent numbers. Similar differences in populations were also observed in a culture-independent approach comparing a wild rice (O. officinalis) and a modern-type O. sativa plant: in clone libraries of root-associated nitrogenase (nifH) gene fragments, the diazotrophic diversity was lower in the wild rice species. New lineages of nifH genes were detected, e.g. one deeply branching cluster within the anf (iron) nitrogenases. Our studies demonstrate that the natural host range of Azoarcus spp. extends to rice, wild rice species and old varieties being preferred over modern cultivars.  相似文献   

4.
Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.  相似文献   

5.
Wu L  Ma K  Lu Y 《Microbial ecology》2009,57(1):58-68
The diversity and function of nitrogen-fixing bacteria colonizing rice roots are not well understood. A field experiment was conducted to determine the diversity of diazotrophic communities associated with roots of modern rice cultivars using culture-independent molecular analyses of nitrogenase gene (nifH) fragments. Experimental treatments included four modern rice cultivars (Oryza sativa, one Indica, one Japonica and two hybrid rice varieties) and three levels (0, 50, and 100 kg N ha−1) of N (urea) fertilizer application. Cloning and sequencing of 103 partial nifH genes showed that a diverse community of diazotrophs was associated with rice roots. However, the nifH gene fragments belonging to betaproteobacteria were dominant, accounting for nearly half of nifH sequences analyzed across the clone libraries. Most of them were similar to nifH fragments retrieved from wild rice and Kallar grass, with Azoarcus spp. being the closest cultured relatives. Alphaproteobacteria were also detected, but their relative abundance in the nifH gene pools was dramatically decreased with N fertilizer application. In addition, a high fraction of nifH gene pools was affiliated with methylotrophs and methane oxidizers. The sequence analysis was consistent with the terminal restriction fragment-length polymorphism (T-RFLP) fingerprinting of the nifH gene fragments, which showed three of four dominant terminal restriction fragments were mainly related to betaproteobacteria based on in silico digestion of nifH sequences. T-RFLP analyses also revealed that the effects of N fertilizer on the nifH gene diversity retrieved from roots varied according to rice cultivars. In summary, the present study revealed the prevalence of betaproteobacterial sequences among the proteobacteria associated with roots of modern rice cultivars. This group of diazotrophs appeared less sensitive to N fertilizer application than diazotrophic alphaproteobacteria. Furthermore, methylotrophs may also play a role in nitrogen fixation on rice roots. However, it must be noted that due to the potential bias of polymerase chain reaction protocol, the significance of non-proteobacterial diazotrophs such as Firmicutes and anaerobic bacteria is possibly underestimated.  相似文献   

6.
Nine diazotrophic bacteria were isolated from surface-sterilized roots and culms of wheat variety Malviya-234, which is grown with very low or no inputs of nitrogen fertilizer. Out of the nine bacteria, four showed indole acetic acid (IAA) production, and five were positive for P solubilization. One isolate, WM234C-3, showed appreciable level of nitrogenase activity, IAA production, and P solubilization ability, and was further characterized with a view to exploiting its plant growth promoting activity. Based on 16S rDNA sequence analysis, this isolate was identified as Achromobacter xylosoxidans. Diazotrophic nature of this particular isolate was confirmed by Western blot analysis of dinitrogenase reductase and amplification of nifH. Analysis of the nifH sequence showed close homology with typical diazotrophic bacteria. Endophytic nature and cross-infection ability of WM234C-3 were tested by molecular tagging with gusA fused to a constitutive promoter followed by inoculation onto rice seedlings in axenic conditions. At 21 days after inoculation, the roots showed blue staining, the most intense color being at the emergence of lateral roots and root tips. Microscopic observation confirmed colonization of gus-tagged WM234C-3 in the intercellular spaces of cortical as well as vascular zones of roots. Inoculation of gus-tagged WM234C-3 to rice plants resulted in significant increase in root/shoot length, fresh weight, and chlorophyll a content. Plant growth promoting features coupled with cross-infection ability suggest that this endophytic bacterium may be exploited as agricultural agent for various crops after a thorough and critical pathogenicity test.  相似文献   

7.
AIMS: To isolate and characterize endophytic diazotrophic bacteria from a semi-aquatic grass (Typha australis) which grows luxuriantly with no addition of any nitrogen source. METHODS AND RESULTS: Ten endophytic diazotrophic bacteria from surface-sterilized roots and culm of T. australis were isolated and screened for plant growth-promoting activities employing standard methods. Based on the rate of nitrogenase activity, indole acetic acid (IAA) production and phosphate (P) solubilization, one root isolate namely GR-3 was found to be the most efficient one. This isolate was identified as Klebsiella oxytoca on the basis of 16S rDNA sequence analysis. Amplification of nifH by polymerase chain reaction (PCR) and detection of dinitrogenase reductase by western blot confirmed the diazotrophic nature of GR-3. It was tagged with gusA fused to a constitutive promoter and the resulting transconjugant was inoculated onto endophyte-free rice variety Malviya dhan-36 seedlings to express cross-infection ability which resulted in a significant increase in root/shoot length and chlorophyll a content. CONCLUSIONS: Roots and culm of T. australis harbour several endophytic diazotrophic bacteria. One root isolate, identified as K. oxytoca GR-3, seems to be an efficient plant growth-promoting bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY: Plant growth-promoting properties of GR-3 suggest that this promising isolate merits further investigations for potential application in agriculture.  相似文献   

8.
Six diazotrophic bacteria were isolated from surface-sterilized roots of rice variety HUR-36, which is grown with very low or no inputs of nitrogen fertilizer. Out of six bacteria one isolate, RREM25, showed appreciable level of nitrogenase activity, IAA production, and Phosphate solubilization ability, and was further characterized with a view to exploiting its plant growth promoting activity. Based on 16S rRNA gene sequence analysis, this isolate was identified as Burkholderia cepacia. Diazotrophic nature of this particular isolate was confirmed by Western blot analysis of dinitrogenase reductase and amplification of nifH. Microscopic observation confirmed colonization of gfp/gusA-tagged RREM25 in the intercellular spaces of cortical as well as vascular zones of roots. Inoculation of RREM25 to rice plants resulted in significant increase in plant height, dry shoot and root weight, chlorophyll content, nitrogen content and nitrogenase activity. Plant growth promoting features suggest that this endophytic bacterium may be exploited in rice cultivation after a thorough and critical pathogenicity test.  相似文献   

9.
AIM: This study has been aimed (i) to isolate and identify diazotrophs from Korean rice varieties; (ii) to examine the long-term effect of N and compost on the population dynamics of diazotrophs and (iii) to realize the shot-term inoculation effect of these diazotrophs on rice seedlings. METHODS AND RESULTS: Diazotrophic and heterotrophic bacterial numbers were enumerated by most probable number method and the isolates were identified based on morphological, physiological, biochemical and 16s rDNA sequence analysis. Long-term application of fertilizer N with compost enhanced both these numbers in rice plants and its environment. Bacteria were high in numbers when malate and azelaic acids were used as carbon source, but less when sucrose was used as a carbon substrate. The combined application promoted the association of diazotrophic bacteria like Azospirillum spp., Herbaspirillum spp., Burkholderia spp., Gluconacetobacter diazotrophicus and Pseudomonas spp. in wetland rice plants. Detection of nifD genes from different diazotrophic isolates indicated their nitrogen fixing ability. Inoculation of a representative isolate from each group onto rice seedlings of the variety IR 36 grown in test tubes indicated the positive effect of these diazotrophs on the growth of rice seedlings though the percentage of N present in the plants did not differ much. CONCLUSIONS: Application of compost with fertilizer N promoted the diazotrophic and heterotrophic bacterial numbers and their association with wetland rice and its environment. Compost application in high N fertilized fields would avert the reduction of N(2)-fixing bacterial numbers and their association was beneficial to the growth of rice plants. SIGNIFICANCE AND IMPACT OF THE STUDY: The inhibitory effect of high N fertilization on diazotrophic bacterial numbers could be reduced by the application of compost and this observation would encourage more usage of organic manure. This study has also thrown light on the wider geographic distribution of G. diazotrophicus with wetland rice in temperate region where sugarcane (from which this bacterium was first reported to be associating and thereon from other plant species) is not cultivated.  相似文献   

10.
Isolation of endophytic diazotrophic bacteria from wetland rice   总被引:16,自引:3,他引:13  
Barraquio  W.L.  Revilla  L.  Ladha  J.K. 《Plant and Soil》1997,194(1-2):15-24
Endophytic nitrogen-fixing bacteria are believed to contribute substantial amounts of N to certain gramineous crops. We have been interested to find (a) a diazotroph(s) in rice which can aggressively and stably persist and fix nitrogen in interior tissues and (b) unique rice-diazotrophic endophyte combinations. To achieve these objectives, it has been essential to find an efficient method to surface sterilize rice tissues. The method described here consists of exposing tissues to 1% Chloramine T for 15 min followed by shaking with glass beads. It has proven very efficient since (a) surface bacterial populations on the root and culm were found to be reduced by more than 90%, (b) the number of the internal colonizers was found to be significantly higher than the number of surface bacteria, and (c) colonization of root but not subepidermal tissue by gusA-marked Herbaspirillum seropedicae Z67 bacteria was found to be virtually eliminated. Nitrogen-fixing putative endophytic populations (MPN g dry wt) in the root (7.94 × 10) and culm (2.57 × 10) on field-grown IR72 plants grown in the absence of N fertilizer was found to be significantly higher near heading stage. The corresponding total putative endophyte populations in the tissues of 25 highly diverse genotypes of rice and their relatives was found to range from 10–10and 10–10, in the roots and culms, respectively. Generally, the resident bacteria were found to be non-diazotrophic, although in isolated cases diazotrophs were found, for example in the roots and culm of IR72 rice plants, or the culm of Zizaniopsis villanensis plants. The size of populations of diazotrophic bacteria in different rice genotypes was found to be 10–10 for the roots and 10–10 for the culms, respectively. The rice genera-related plants Potamophila pariffora and Rhynchoryza subulata showed the highest levels.  相似文献   

11.
12.
Burkholderia brasiliensis, a Gram-negative diazotrophic endophytic bacterium, was first isolated from roots, stems, and leaves of rice plant in Brazil. The polysaccharide moiety was released by ammonolysis from the B. brasiliensis lipopolysaccharide (LPS), allowing the unambiguous characterization of a 3,6-dideoxy-4-C-(1-hydroxyethyl)-D-xylo-hexose (yersiniose A), an uncommon feature for Burkholderia LPS. The complete structure of the yersiniose A-containing O-antigen was identified by sugar and methylation analyses and NMR spectroscopy. Our results show that the repeating oligosaccharide motif of LPS O-chain consists of a branched tetrasaccharide with the following structure:-->2-alpha-d-Rhap-(1-->3)-[alpha-YerAp-(1-->2)]-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->.  相似文献   

13.
The structure of an exopolysaccharide (EPS) produced by Burkholderia brasiliensis, a diazotrophic endophytic organism originally isolated from rice roots, has been determined. The bacterium was grown in a synthetic medium, containing mannitol and glutamate, which favours the expression of two anionic EPSs, which were separated by anion-exchange chromatography. The structure of the repeat unit of EPS A, eluted at higher ionic strength, was determined by a combination of methylation analysis, partial hydrolysis, chemical degradations, and NMR spectroscopic studies, and shown to be the linear O-acetylated pentasaccharide: -->4)-alpha-D-Glcp-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA-(1-->3)-beta-L-Rhap[2OAc]-(1-->4)-beta-D-Glcp-(1-->.  相似文献   

14.
Colonization of Maize and Rice Plants by Strain Bacillus megaterium C4   总被引:1,自引:0,他引:1  
Liu X  Zhao H  Chen S 《Current microbiology》2006,52(3):186-190
Bacillus megaterium C4, a nitrogen-fixing bacterium, was marked with the gfp gene. Maize and rice seedlings were inoculated with the, GFP-labeled B. megaterium C4 and then grown in gnotobiotic condition. Observation by confocal laser scanning microscope showed that the GFP-labeled bacterial cells infected the maize roots through the cracks formed at the lateral root junctions and then penetrated into cortex, xylem, and pith, and that the bacteria migrated slowly from roots to stems and leaves. The bacteria were mainly located in the intercellular spaces, although a few bacterial cells were also present within the xylem vessels, root hair cells, epidermis, cortical parenchyma, and pith cells. In addition, microscopic observation also revealed clearly that the root tip in the zone of elongation and differentiation and the junction between the primary and the lateral roots were the two sites for the bacteria entry into rice root. Therefore, we conclude that this Gram-positive nitrogen-fixer has a colonization pattern similar to those of many Gram-negative diazotrophs, such as Azospirillun brasilense Yu62 and Azoarcus sp. As far as we know, this is the first detailed report of the colonization pattern for Gram-positive diazotrophic Bacillus.  相似文献   

15.
Pantoea (formerly Enterobacter) agglomerans YS19 is a dominant diazotrophic endophyte isolated from rice (Oryza sativa cv. Yuefu) grown in a temperate-climate region in west Beijing, China. In vitro adsorption and invasion of YS19 on host plant root were studied in this research. Adsorption of YS19 on rice seedling roots closely resembled the Langmuir adsorption and showed a higher adsorption quantity than the control strains Paenibacillus polymyxa WY110 (a rhizospheric bacterium from the same rice cultivar) and Escherichia coli HB101 (a general model bacterium). Adsorption dynamics study revealed high rates and a long duration of the YS19-rice root adsorption process. Adsorption of YS19 was mainly observed on the root hair, though which it enters the plant. This in vitro adsorption study revealed an apparent strong interaction between YS19 and rice at the early endophyte-host recognition stage.  相似文献   

16.
The availability of nitrogen often limits plant growth in terrestrial ecosystems. The only biological reaction counterbalancing the loss of N from soils or ecosystems is biological nitrogen fixation, the enzymatic reduction of N2 to ammonia. Some gramineous crops such as certain Brazilian sugar cane cultivars or Kallar grass can derive a substantial part of the plant nitrogen from biological nitrogen fixation. Our research on grass-associated diazotrophs focuses on endophytic bacteria, microorganisms that multiply and spread inside plants without causing damage of the host plants or conferring an ecological threat to the plant. This review summarizes the current knowledge on the diazotrophic endophyte Azoarcus sp. BH72, which is capable of colonizing the interior of rice roots, one of the globally most important crops.  相似文献   

17.
We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.  相似文献   

18.
Pantoea agglomerans YS19 is a diazotrophic endophyte isolated from rice (Oryza sativa cv. Yuefu) grown in a temperate-climatic region in west Beijing (China). The colonization of YS19 on host rice was studied in this paper. It was revealed that YS19 colonizes in all the tissues of rice seedlings, including roots (dominantly at elongation regions, lateral root junctions, root hairs and root caps), stems and leaves. More YS19 colonizes in stem and leaves (1.40 × 105 CFU mg−1 fresh weight) than that in roots (3.60 × 104 CFU mg−1). Symplasmata, a kind of adaptive structure of the strain for its endophytic living, were repeatedly observed to form inside root or stem cortex parenchyma tissues, as well as on leaf surfaces and also rhizoplanes. A novel matrix protein (SPM43.1) with its expression paralleling to the formation of symplasmata was captured, whose meaning in structural construction of symplasmata was also discussed.  相似文献   

19.
Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and (15)N(2) gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.  相似文献   

20.
The present study deals with the isolation of plant growth promoting rhizobacteria (PGPR) from rice (variety NIAB IRRI-9) and the beneficial effects of these inoculants on two Basmati rice varieties. Nitrogen-fixing activity (acetylene-reduction activity) was detected in the roots and submerged shoots of field-grown rice variety NIAB IRRI-9. Estimation of the population size of diazotrophic bacteria by ARA-based MPN (acetylene reduction assay-based most probable number) in roots and shoots indicated about 10(5)-10(6) counts/g dry weight at panicle initiation and grain filling stages. Four bacterial isolates from rice roots and shoots were obtained in pure culture which produced phytohormone indoleacetic acid (IAA) in the growth medium. Among these, three isolates S1, S4, and R3 reduced acetylene to ethylene in nitrogen-free semi-solid medium. Morphological and physiological characteristics of the isolates indicated that three nitrogen-fixing isolates S1, S4, and R3 belonged to the genus Enterobacter, while the non-fixing isolate R8 belonged to the genus Aeromonas. 16S rRNA sequence of one isolate from root (R8) and one isolate from shoot (S1) was obtained which confirmed identification of the isolates as Aeromonas veronii and Enterobacter cloacae, respectively. The 1517-nucleotide-long sequence of the isolate R8 showed 99% similarity with Aeromonas veronii (accession No. AF099023) while partial 16S rRNA sequence (two stretches of total 1271 nucleotide length) of S1 showed 97% similarity with the sequence of Enterobacter cloacae (accession No. AJ251469). The seedlings of two rice varieties Basmati 385 and Super Basmati were inoculated with the four bacterial isolates from rice and one Azospirillum brasilense strain Wb3, which was isolated from wheat. In the rice variety Basmati 385, maximum increase in root area and plant biomass was obtained in plants inoculated with Enterobacter S1 and Azospirillum Wb3, whereas in the rice variety Super Basmati, inoculation with Enterobacter R3 resulted in maximum increase of root area and plant biomass. Nitrogen fixation was quantified by using 15N isotopic dilution method. Maximum fixation was observed in Basmati 385 with the inoculants Azospirillum Wb3 and Enterobacter S1 where nearly 46% and 41% of the nitrogen was derived from atmosphere (%Ndfa), respectively. In general, higher nitrogen fixation was observed in variety Basmati 385 than in Super Basmati, and different bacterial strains were found more effective as inoculants for the rice varieties Basmati 385 and Super Basmati.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号