首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diabetes mellitus is a multifactorial metabolic disease characterized by post-prandial hyperglycemia (PPHG). α-amylase and α-glucosidase inhibitors aim to explore novel therapeutic agents. Herein we report the promises of Dioscorea bulbifera and its bioactive principle, diosgenin as novel α-amylase and α-glucosidase inhibitor. Among petroleum ether, ethyl acetate, methanol and 70% ethanol (v/v) extracts of bulbs of D. bulbifera, ethyl acetate extract showed highest inhibition upto 72.06 ± 0.51% and 82.64 ± 2.32% against α-amylase and α-glucosidase respectively. GC-TOF-MS analysis of ethyl acetate extract indicated presence of high diosgenin content. Diosgenin was isolated and identified by FTIR, 1H NMR and 13C NMR and confirmed by HPLC which showed an α-amylase and α-glucosidase inhibition upto 70.94 ± 1.24% and 81.71 ± 3.39%, respectively. Kinetic studies confirmed the uncompetitive mode of binding of diosgenin to α-amylase indicated by lowering of both Km and Vm. Interaction studies revealed the quenching of intrinsic fluorescence of α-amylase in presence of diosgenin. Similarly, circular dichroism spectrometry showed diminished negative humped peaks at 208 nm and 222 nm. Molecular docking indicated hydrogen bonding between carboxyl group of Asp300, while hydrophobic interactions between Tyr62, Trp58, Trp59, Val163, His305 and Gln63 residues of α-amylase. Diosgenin interacted with two catalytic residues (Asp352 and Glu411) from α-glucosidase. This is the first report of its kind that provides an intense scientific rationale for use of diosgenin as novel drug candidate for type II diabetes mellitus.  相似文献   

2.
1. An α-(1→6)-glucosidase has been separated from cell extracts of Streptococcus mitis. The enzyme was freed from transglucosylase by adsorption of the latter on retrograded amylose. 2. The enzyme was detected in five of the six strains of S. mitis that were studied; α-(1→6)-glucosidase was not found in strain RB1633, a strain that did not store polysaccharide. 3. The glucosidase could act on compounds in which α-glucose is joined through an α-(1→6)-bond to either a maltosaccharide or an isomaltosaccharide. 62-α-Glucosylmaltose (panose) and 63-α-glucosylmaltotriose were hydrolysed more rapidly and isomaltodextrins more slowly than isomaltose. 4. Transferring activity towards isomaltose and panose was appreciable when the concentration of substrate was 2% or higher. 5. The enzyme had no action on α-(1→4)-glucosidic linkages. 6-α-Maltodextrinylglucoses were hydrolysed only after transglucosylase action had attenuated them to isomaltose.  相似文献   

3.
Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a γ-linkage, called poly-γ-glutamate (γ-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for γ-PGA (designated γ-PGA hydrolase, PghP) from bacteriophage ΦNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed γ-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-γ-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn2+ or Mn2+ ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated Mr of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel γ-glutamyl hydrolase. Whereas phage ΦNIT1 proliferated in B. subtilis cells encapsulated with γ-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce γ-PGA. Analogous to polysaccharide capsules, γ-PGA appears to serve as a physical barrier to phage absorption. Phages break down the γ-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.  相似文献   

4.
Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.

Highlights

  1. Oleanolic acid oxime ester derivatives (3a–3t) were synthesised and screened against α-glucosidase and α-amylase.
  2. Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.
  3. Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.
  4. Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.
  相似文献   

5.
Three isoforms of α-glucosidase (EC 3.2.1.20) have been extracted from pea (Pisum sativum L.) seedlings and separated by DEAE-cellulose and CM-Sepharose chromatography. Two α-glucosidase isoforms (αG1 and αG2) were most active under acid conditions, and appeared to be apoplastic. A neutral form (αG3) was most active near pH 7, and was identified as a chloroplastic enzyme. Together, the activity of αG1 and αG2 in apoplastic preparations accounted for 21% of the total acid α-glucosidase activity recovered from pea stems. The vast majority (86%) of the apoplastic acid α-glucosidase activity was due to αG1. The apparent Km values for maltose of αG1 and αG2 were 0.3 and 1.3 millimolar, respectively. The apparent Km for maltose of αG3 was 33 millimolar. The respective native molecular weights of αG1, αG2, and αG3 were 125,000, 150,000, and 110,000.  相似文献   

6.
A stable hybrid obtained by protoplast fusion between a Cellulomonas sp. and Bacillus subtilis exhibits an altered pattern of enzyme induction with different cellulosic substrates. Unlike in the Cellulomonas sp., xylanase was induced in the hybrid organism specifically by xylan, and endoglucanase was induced by carboxymethyl cellulose. The amount and specific activity of xylanase produced by the hybrid were more than those produced by the Cellulomonas sp. β-Glucosidase which is cell bound or intracellular in the Cellulomonas sp. was secreted by the hybrid organism, and relative amounts of extracellular β-glucosidase were high. Furthermore, this extracellular β-glucosidase activity was dependent on the nature of the cellulosic substrate. Endoglucanases synthesized in the hybrid differed in their electrophoretic mobilities as compared with the parental enzymes.  相似文献   

7.

Background

Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R. prolixus perimicrovillar membranes in Hz formation was demonstrated.

Methodology/Principal Findings

Hz formation activity of an α-glucosidase was investigated. Hz formation was inhibited by specific α-glucosidase inhibitors. Moreover, Hz formation was sensitive to inhibition by Diethypyrocarbonate, suggesting a critical role of histidine residues in enzyme activity. Additionally, a polyclonal antibody raised against a phytophagous insect α-glucosidase was able to inhibit Hz formation. The α-glucosidase inhibitors have had no effects when used 10 h after the start of reaction, suggesting that α-glucosidase should act in the nucleation step of Hz formation. Hz formation was seen to be dependent on the substrate-binding site of enzyme, in a way that maltose, an enzyme substrate, blocks such activity. dsRNA, constructed using the sequence of α-glucosidase gene, was injected into R. prolixus females'' hemocoel. Gene silencing was accomplished by reduction of both α-glucosidase and Hz formation activities. Insects were fed on plasma or hemin-enriched plasma and gene expression and activity of α-glucosidase were higher in the plasma plus hemin-fed insects. The deduced amino acid sequence of α-glucosidase shows a high similarity to the insect α-glucosidases, with critical histidine and aspartic residues conserved among the enzymes.

Conclusions/Significance

Herein the Hz formation is shown to be associated to an α-glucosidase, the biochemical marker from Hemipteran perimicrovillar membranes. Usually, these enzymes catalyze the hydrolysis of glycosidic bond. The results strongly suggest that α-glucosidase is responsible for Hz nucleation in the R. prolixus midgut, indicating that the plasticity of this enzyme may play an important role in conferring fitness to hemipteran hematophagy, for instance.  相似文献   

8.
The heat resistance of wild-type spores of Bacillus subtilis or spores (termed αβ) lacking DNA protective α/β-type small, acid-soluble spore proteins was not altered by anaerobiosis or high concentrations of the free radical scavenging agents ethanethiol and ethanedithiol. Heat-killed wild-type and αβ spores exhibited no increase in either protein carbonyl content or oxidized bases in DNA. These data strongly suggest that oxidative damage to spore macromolecules does not contribute significantly to spore killing by heat.  相似文献   

9.
Escherichia coli wild-type cells form constitutively the enzyme phospho-β-glucosidase A, which has a high affinity for phosphorylated aromatic β-glucosides and a low affinity for phosphorylated β-methyl-glucoside. Phospho-β-glucosidase B and β-glucoside permease I are formed in aromatic β-glucoside-fermenting mutants. Mutants lacking phospho-β-glucosidases A and B have been isolated. These mutants showed a reduced rate of inducibility of the β-glucoside permease I. The restoration of phospho-β-glucosidase A or B activity resulted in an increased rate of induction of the β-glucoside permease I. The presence of the phospho-β-glucosidases was not required for the constitutive biosynthesis of the β-glucoside permease. Mutants selected for growth on β-methyl-glucoside as carbon source showed an increased level of constitutive phospho-β-glucosidase A activity. Gene bglD, the structural gene for phospho-β-glucosidase A, was mapped between the pyrE locus and the cluster bgl loci, whereas bglE, the regulatory site determining the hyperproduction of phospho-β-glucosidase A, was mapped between the bgl and ilv clusters. The bglE locus appears to have a regulatory effect on the expression of the bglD gene.  相似文献   

10.
Relation of glycosidases to bean hypocotyl growth   总被引:6,自引:5,他引:1       下载免费PDF全文
Nevins DJ 《Plant physiology》1970,46(3):458-462
The enzymes β-glucosidase, α-glucosidase, β-galactosidase, α-galactosidase, and β-xylosidase were detected in Phaseolus vulgaris L. var. Red Kidney bean hypocotyl tissue throughout the first 13 days of development with p-nitrophenyl glycosides as substrates. Activities of all enzymes except β-glucosidase declined as a function of increasing tissue age. In contrast, β-glucosidase activity increased rapidly 3 days after imbibition to a maximal activity at 5 days and then subsided to one-third the maximum by day 7. This activity peak immediately preceded the logarithmic phase of hypocotyl growth. This enzyme is strongly associated with cell walls during extraction, suggesting that it is wall-bound in situ. Various polysaccharide substrates were used to evaluate the specificity of this enzyme.  相似文献   

11.
Sun Z  Henson CA 《Plant physiology》1990,94(1):320-327
The initial hydrolysis of native (unboiled) starch granules in germinating cereal kernels is considered to be due to α-amylases. We report that barley (Hordeum vulgare L.) seed α-glucosidases (EC 3.2.1.20) can hydrolyze native starch granules isolated from barley kernels and can do so at rates comparable to those of the predominant α-amylase isozymes. Two α-glucosidase charge isoforms were used individually and in combination with purified barley α-amylases to study in vitro starch digestion. Dramatic synergism, as much as 10.7-fold, of native starch granule hydrolysis, as determined by reducing sugar production, occurred when high pl α-glucosidase was combined with either high or low pl α-amylase. Synergism was also found when low pl α-glucosidase was combined with α-amylases. Scanning electron micrographs revealed that starch granule degradation by α-amylases alone occurred specifically at the equatorial grooves of lenticular granules. Granules hydrolyzed by combinations of α-glucosidases and α-amylases exhibited larger and more numerous holes on granule surfaces than did those granules attacked by α-amylase alone. As the presence of α-glucosidases resulted in more areas being susceptible to hydrolysis, we propose that this synergism is due, in part, to the ability of the α-glucosidases to hydrolyze glucosidic bonds other than α-1,4- and α-1,6- that are present at the granule surface, thereby eliminating bonds which were barriers to hydrolysis by α-amylases. Since both α-glucosidase and α-amylase are synthesized in aleurone cells during germination and secreted to the endosperm, the synergism documented here may function in vivo as well as in vitro.  相似文献   

12.
Ethyl methanesulfonate (EMS) killed wild-type Bacillus subtilis spores as rapidly as spores lacking small, acid-soluble proteins (SASP) of the α/β type (αβ spores), and 20% of the survivors had obvious mutations. A recA mutation increased the EMS sensitivity of wild-type and αβ spores similarly but reduced their mutagenesis; EMS treatment of dormant spores also resulted in the induction of RecA synthesis during spore germination. EMS generated similar levels of alkylated bases in wild-type and αβ spore DNAs, in purified DNA, or in DNA saturated with α/β-type SASP. Ethylene oxide (EtO) also generated similar levels of base alkylation in wild-type and αβ spore DNAs. These data indicate that EMS and EtO kill spores at least in part by DNA damage but that α/β-type SASP, which protect DNA against many types of damage, do not protect spore DNA from base alkylation.  相似文献   

13.
The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.  相似文献   

14.
In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.  相似文献   

15.
Aspergillus oryzae was found to secrete two distinct β-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3′,4′,5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total β-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant β-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-β-d-glucoside as the substrate, we found that the enzyme was optimally active at 50°C and pH 5.0 and had a specific activity of 1,066 μmol min−1 mg of protein−1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki, 1.36 M) or glucono-δ-lactone (Ki, 12.5 mM), another powerful β-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal β-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1→3)- and (1→6)-β-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-β-d-glucosides in a grape must (pH 2.9, 90 g of glucose liter−1). Other flavor precursors (benzyl- and 2-phenylethyl-β-d-glucosides) and prunin (4′,5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel β-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors.β-Glucoside glucohydrolases, commonly called β-glucosidases, catalyze the hydrolysis of alkyl- and aryl-β-glucosides, as well as diglucosides and oligosaccharides. These enzymes are widely used in various biotechnological processes, including the production of fuel ethanol from cellulosic agricultural residues (4, 27, 48) and the synthesis of useful β-glucosides (21, 38). In the flavor industry, β-glucosidases are also key enzymes in the enzymatic release of aromatic compounds from glucosidic precursors present in fruits and fermentating products (13, 39). Indeed, many natural flavor compounds, such as monoterpenols, C-13 norisoprenoids, and shikimate-derived compounds, accumulate in fruits as flavorless precursors linked to mono- or diglycosides and require enzymatic or acidic hydrolysis for the liberation of their fragrances (41, 45). Finally, β-glucosidases can also improve the organoleptic properties of citrus fruit juices, in which the bitterness is in part due to a glucosidic compound, naringin (4′,5,7-trihydroxyflavanone-7-rhamnoglucoside), whose hydrolysis requires, in succession, an α-rhamnosidase and a β-glucosidase (33).It is now well-established that certain monoterpenols of grapes (e.g., linalol, geraniol, nerol, citronelol, α-terpineol, and linalol oxide), which are linked to diglycosides, such as 6-O-α-l-rhamnopyranosyl-, 6-O-α-l-arabinofuranosyl-, and 6-O-β-d-apiofuranosyl-β-d-glucosides, contribute significantly to the flavor of wine (15, 44). The enzymatic hydrolysis of these compounds requires a sequential reaction; first, an α-l-rhamnosidase, an α-l-arabinofuranosidase, or a β-d-apiofuranosidase cleaves the (1→6) osidic linkage, and then, the flavor compounds are liberated from the monoglucosides by the action of a β-glucosidase (18, 19). Unlike acidic hydrolysis, enzymatic hydrolysis is highly efficient and does not result in modifications of the aromatic character (16). However, grape and yeast glucosidases exhibit limited activity on monoterpenyl-glucosides during winemaking, and a large fraction of the aromatic precursors remains unprocessed (9, 16, 35). The addition of exogenous β-glucosidase during or following fermentation has been found to be the most effective way to improve the hydrolysis of the glycoconjugated aroma compounds in order to enhance wine flavor (2, 14, 39, 40). The ideal β-glucosidase should function and be stable at a low pH value (pH 2.5 to 3.8) and should be active at a high concentration of glucose (10 to 20%) and in the presence of 10 to 15% ethanol. However, most microbial β-glucosidases are very sensitive to glucose inhibition (4, 12, 47), as well as to inhibition by glucono-δ-lactone, another powerful β-glucosidase inhibitor produced by grape-attacking fungi which can be found in wine must at concentrations up to 2 g/liter (10).The need for more suitable enzymes has led us and other workers to search for novel β-glucosidases with the desired properties. Recently, we showed that an extracellular glucose-tolerant and pH-stable β-glucosidase can be produced by Aspergillus strains (17). However, the enzyme of interest represented only a minor fraction of total β-glucosidase activity, and the major form was highly sensitive to glucose inhibition. Aspergillus oryzae appeared to be the best producer of the minor form when it was grown on quercetin (3,3′,4′,5,7-pentahydroxyflavone), a phenolic flavonoid found in plant cell walls. This paper presents further data on the production and characterization of this novel highly glucose-tolerant β-glucosidase (designated HGT-BG) purified from the extracellular culture filtrate of A. oryzae grown on quercetin.  相似文献   

16.
Ceramide lactoside [1-O-(galactosido-4-β-glucosido)-2-N-acyl-sphingosine] was hydrolysed to ceramide glucoside and galactose by β-galactosidase of rat brain. The reaction was not reversible, required cholate or taurocholate, had optimum pH5·0 and Km 2·2×10−5m. It was inhibited by γ-galactonolactone and galactose as well as by ceramide, sphingosine and fatty acid. Ceramide lactoside could be degraded to ceramide, galactose and glucose by mixtures of rat-brain β-galactosidase and ox-brain β-glucosidase.  相似文献   

17.
Preferential Utilization of Cellobiose by Thermomonospora curvata   总被引:3,自引:1,他引:2       下载免费PDF全文
Thermomonospora curvata was cultivated on mineral salts medium containing glucose and cellobiose under conditions that increasingly favored the uptake of glucose. In each case cellobiose was utilized in preference to glucose and induced β-glucosidase and endoglucanase activity. [14C]glucose metabolism studies indicated that cellobiose was not cleaved by extracellular β-glucosidase and transported as glucose. No evidence of cellobiose phosphorylase or a cellobiose-specific phosphoenolpyruvate-phosphotransferase system was observed.  相似文献   

18.
Methionine residues in α/β-type small, acid-soluble spore proteins (SASP) of Bacillus species were readily oxidized to methionine sulfoxide in vitro by t-butyl hydroperoxide (tBHP) or hydrogen peroxide (H2O2). These oxidized α/β-type SASP no longer bound to DNA effectively, but DNA binding protected α/β-type SASP against methionine oxidation by peroxides in vitro. Incubation of an oxidized α/β-type SASP with peptidyl methionine sulfoxide reductase (MsrA), which can reduce methionine sulfoxide residues back to methionine, restored the α/β-type SASP’s ability to bind to DNA. Both tBHP and H2O2 caused some oxidation of the two methionine residues of an α/β-type SASP (SspC) in spores of Bacillus subtilis, although one methionine which is highly conserved in α/β-type SASP was only oxidized to a small degree. However, much more methionine sulfoxide was generated by peroxide treatment of spores carrying a mutant form of SspC which has a lower affinity for DNA. MsrA activity was present in wild-type B. subtilis spores. However, msrA mutant spores were no more sensitive to H2O2 than were wild-type spores. The major mechanism operating for dealing with oxidative damage to α/β-type SASP in spores is DNA binding, which protects the protein’s methionine residues from oxidation both in vitro and in vivo. This may be important in vivo since α/β-type SASP containing oxidized methionine residues no longer bind DNA well and α/β-type SASP-DNA binding is essential for long-term spore survival.  相似文献   

19.
Ceramide glucoside (1-O-glucosido-2-N-acyl-sphingosine) was hydrolysed to ceramide (N-acyl-sphingosine) and glucose by β-glucosidase from ox brain. The reaction was stimulated by the non-ionic detergent, Triton X-100, or by the anionic detergents, cholate or taurocholate. It was not reversible, had optimum pH5·0 (with acetate buffer) or 5·6 (with pyridine buffer), had Km 1·8×10−4m and was inhibited by δ-gluconolactone and sphingosine, but not by ceramide or palmitic acid.  相似文献   

20.
Alpha-glucosidase inhibitors currently form an important basis for developing novel drugs for diabetes treatment. In our preliminary tests, the ethyl acetate fraction of Phlomis tuberosa extracts showed significant α-glucosidase inhibitory activity (IC₅₀ = 100 μg/mL). In the present study, a combined method using Sepbox chromatography and thin-layer chromatography (TLC) bioautography was developed to probe α-glucosidase inhibitors further. The ethyl acetate fraction of P. tuberosa extracts was separated into 150 individual subfractions within 20 h using Sepbox chromatography. Then, under the guidance of TLC bioautography, 20 compounds were successfully isolated from these fractions, including four new diterpenoids [14-hydroxyabieta-8,11,13-triene-11-carbaldehyde-18-oic-12-carboxy-13-(1-hydroxy-1-methylethyl)-lactone (1), 14-hydroxyabieta-8,11,13-triene-17-oic-12-carboxy-13-(1-hydroxy-1-methylethyl)-lactone (2), 14,16-dihydroxyabieta-8,11,13-triene-15,17-dioic acid (3), and phlomisol (15,16-eposy-8,13(16),14-labdatrien-19-ol) (4)], and 16 known compounds. Activity estimation indicated that 15 compounds showed more potent α-glucosidase inhibitory effects (with IC50 values in the range 0.067–1.203 mM) than the positive control, acarbose (IC50 = 3.72 ± 0.113 mM). This is the first report of separation of α-glucosidase inhibitors from P. tuberosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号