首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence has been accumulating at the oligomer level that free radical-initiated DNA damage includes lesions in which two adjacent bases are both modified. Prominent examples are lesions in which a pyrimidine base is degraded to a formamido remnant and an adjacent guanine base is oxidized. An assay has been devised to detect double-base lesions based on the fact that the phosphoester bond 3' to a nuclesoside bearing the formamido lesion is resistant to hydrolysis by nuclease P1. The residual modified dinucleoside monophosphates obtained from a nuclease P1 (plus acid phosphatase) digest of DNA can be (32)P-postlabeled using T4 polynucleotide kinase. Using this assay the formamido single lesion and the formamido-8-oxoguanine double lesion were detected in calf thymus DNA after X-irradiation in oxygenated aqueous solution. The lesions were measured in the forms d(P(F)pG) and d(P(F)pG(H)), where P(F) stands for a pyrimidine nucleoside having the base degraded to a formamido remnant and G(H) stands for 8-oxo-deoxyguanosine. The yields in calf thymus DNA irradiated 60 Gy were 8.6 and 3.2 pmol/microgram DNA, respectively.  相似文献   

2.
A 32P-postlabeling assay has been developed for the simultaneous detection of the thymine glycol lesion and the formamido remnant of pyrimidine bases in DNA exposed to reactive oxygen species (ROS). The formamido lesion is a principal lesion produced in X-irradiated DNA oligomers when oxygen is available to mediate the damage process. Production of the well-known thymine glycol lesion is less dependent on the concentration of oxygen. These two lesions have the common property that they make the phosphoester bond 3' to the modified nucleoside resistant to hydrolysis by nuclease P1. Our assay uses 32P-postlabeling to measure these lesions in the form of modified dimers obtained from DNA by nuclease P1 digestion. Appropriate carriers and internal standards have been chemically synthesized to improve the reliability and accuracy of the assay. The measurements were accomplished on 1-microgram samples of DNA.  相似文献   

3.
A prominent lesion in DNA exposed to oxidative free radicals results from the degradation of thymine leaving a formamido remnant. A 32P-postlabeling assay has been developed for the detection of the formamido lesion. The assay is based on the circumstance that the lesion prevents hydrolysis by nuclease PI of the phosphoester bond 3' to the damaged nucleoside. Thus, a nuclease PI plus acid phosphatase digest of DNA generates mostly nucleosides whereas the formamido lesion is rendered as a modified dinucleoside monophosphate. Dinucleoside monophosphates, but not nucleosides, are apt substrates for 32P-postlabeling by polynucleotide kinase. The assay was applied to calf thymus DNA X-irradiated in oxygenated solution. The formamido lesion could be detected down to a dose of a few Gy.  相似文献   

4.
The dinucleoside monophosphates d(TpG), d(TpC), and d(TpT) were X-irradiated in oxygenated solution. In each case the modification of the dinucleoside in which the thymine base is degraded to a formamido remnant was observed as a principal product. The hydrolysis of the phosphoester bond of formamido-modified dinucleosides is much slower than that of the corresponding unmodified dinucleosides. This effect is also observable in the hydrolysis of irradiated DNA, where hydrolysis by nuclease P1 (plus acid phosphatase) generates the modified dinucleosides d(TFpN), TF being the modified thymidine. The total yield of the formamido lesion in all its forms, d(TFpN), exceeds the yield of any other base modification.  相似文献   

5.
It was demonstrated previously that double lesions are produced in DNA by ionizing radiation. These double lesions consist of adjacent nucleotides each bearing a modified base. The goal of the present investigation was to determine whether Fenton chemistry can generate the same kind of lesions. DNA oligomers were exposed to metal-catalyzed H(2)O(2) reactions, and the products were characterized by chromatography and by mass spectrometry. Double lesions are produced by this treatment in which deoxyguanosine is oxidized to 8-oxo-7,8-dihydrodeoxyguanosine and an adjacent pyrimidine nucleoside is degraded to a formamido remnant.  相似文献   

6.
The turnover rates for hydrolysis by nuclease P1 of the 16 unmodified dideoxynucleoside monophosphates were measured. In addition, the turnover rates were measured in a variety of dideoxynucleoside monophosphates containing free radical-induced base modifications. The modified bases included cis-5,6-dihydroxy-5,6-dihydrothymine (thymine glycol), 5,6-dihydrothymine, 5-hydroxymethyuracil, 8-hydroxyguanine, 5-hydroxy-5-methylhydantoin and the formamido remnant which can be derived from either a thymine or a cytosine base. The turnover rate for dinucleoside monophosphates containing 4,8-dihydro-4-hydroxy-8-oxo-guanine modifications, which are induced by singlet oxygen, were also measured. A model was devised for the hydrolysis of DNA by nuclease P1 which uses the observed turnover rates as parameters. The model predicts the abundance of monomers and dimers as hydrolysis proceeds. Whereas the level of monomers increases monotonically, the level of each dimer first increases and then falls off. There are advantages to phosphorylating dimers, as compared with monomers, using polynucleotide kinase. Consequently this model may be of interest in connection with 32P-postlabeling applied to the measurement of DNA damage in nuclease P1 partial hydrolysates of DNA.  相似文献   

7.
Due to instability of pyrimidine motif triplex DNA at physiological pH, triplex stabilization at physiological pH is crucial in improving its potential in various triplex formation-based strategies in vivo, such as regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis. To this end, we investigated the effect of our previously reported chemical modification, 2'-O,4'-C-aminomethylene bridged nucleic acid (2',4'- BNA(NC)) modification, introduced into interrupted and continuous positions of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at physiological pH. The interrupted 2',4'-BNA(NC) modifications of TFO increased the binding constant of the triplex formation at physiological pH by more than 10-fold, and significantly increased the nuclease resistance of TFO. On the other hand, the continuous 2',4'-BNA(NC) modification of TFO showed lower ability to promote the triplex formation at physiological pH than the interrupted 2',4'-BNA(NC) modifications of TFO, and did not significantly change the nuclease resistance of TFO. Selection of the interruptedly 2',4'-BNA(NC)-modified positions in TFO was more favorable for achieving the higher binding affinity of the pyrimidine motif triplex formation at physiological pH and the higher nuclease resistance of TFO than that of the continuously 2',4'-BNA(NC)-modified positions in TFO. We conclude that the interrupted 2',4'-BNA(NC) modification of TFO could be a key chemical modification to enhance pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition, and may eventually lead to progress in various triplex formation-based strategies in vivo.  相似文献   

8.
RNA labeled with [methyl-3H] methionine and [14C]uridine was isolated from the cytoplasm of adenovirus-infected cells and purified by poly(U)-Sepharose chromatography and hybridization to filters containing immobilized adeovirus DNA. Analysis by dimethyl sulfoxide-sucrose gradient sedimentation suggested that the major mRNA species were methylated. 7-Methylguanosine was identified at the 5'-terminus of the advenovirus-specific RNA and could be removed by periodate oxidation and beta-elimination. Structures of the type m7G(5')ppp(5')Nm containing the unusual nucleoside N6, O2'-dimethyladenosine, and smaller amounts of 2'-O-methyladenosine were isolated by DEAE-cellulose chromatography after P1 nuclease digestion of the RNA. Evidence for some 5'-terminal sequences, m7G(5')ppp(5')m6AmpNm, with additional 2'-O-methylribonucleosides was also obtained. A base-methylated nucleoside, N6-methyladenosine, is located within the RNA chain and is released as a mononucleotide by alkali hydrolysis.  相似文献   

9.
10.
Biochemical properties and hormonal regulation of barley nuclease   总被引:6,自引:0,他引:6  
The amino acid composition and NH2-terminal amino acid sequence of barley nuclease (EC 3.1.30.2) were determined. The amino acid composition is similar to that of mung bean nuclease, and therefore the biochemical properties of barley nuclease were characterized and compared with those of mung bean and other plant nucleases. The 3'-nucleotidase activity of barley nuclease is greater for purine than for pyrimidine ribonucleotides. The enzyme has little activity towards ribonucleoside 2' and 5'-monophosphates, and deoxyribonucleoside 3' and 5'-monophosphates, and is also inactive towards the 3'-phosphoester linkage of nucleoside cyclic 2',3' and 3',5'-monophosphates. The enzyme hydrolyzes dinucleoside monophosphates, showing strong preference for purine nucleosides as the 5' residues. Barley nuclease shows significant base preference for homoribonucleic acids, catalyzing the hydrolysis of polycytidylic acid greater than polyuridylic acid greater than polyadenylic acid much greater than polyguanylic acid. The enzyme also has preference for single-stranded nucleic acids. Hydrolysis of nucleic acids is primarily endonucleolytic, whereas the products of digestion possess 5'-phosphomonoester groups. Nuclease activity is inhibited by ethylenediaminetetraacetic acid and zinc is required for reactivation. Secretion of nuclease from barley aleurone layers is dependent on the hormone gibberellic acid [Brown, P.H. and Ho, T.-h. D. (1986) Plant Physiol. 82, 801-806]. Consistent with these results, gibberellic acid induces up to an eight-fold increase in the de novo synthesis of nuclease in aleurone layers. The secreted enzyme is a glycoprotein having an apparent molecular mass of 35 kDa. It consists of a single polypeptide having an asparagine-linked, high-mannose oligosaccharide. The protein portion of the molecule has a molecular mass of 33 kDa.  相似文献   

11.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

12.
Thymidine with the stereoselectively 2H/13C-Labeled sugar moiety, (2'R)(5'S)-[1',2',3',4',5'-(13)C5;2',5'-(2)H2]-thymidine, was synthesized from uniformly 13C-labeled glucose, via the selectively deuterated ribose derivative prepared by the stereo-controlled deuteride transfer reactions. The labeled sugar moiety of the thymidine was then transferred to 2'-deoxyadenosine, 2'-deoxyguanosine, and 2'-deoxyuridine, by the enzymatic transglycosylation reactions by purine and pyrimidine nucleoside phosphorylases, in good yields. Labeled 2'-deoxyuridine was chemically converted to 2'-deoxycytidine. Consequently, all of the 2'-deoxynucleosides prepared by this method has the identically labeled sugar moiety. By using DNA oligomers containing the identically labeled sugar residue for NMR studies, any possible complexity in NMR data analyses expected to be observed for DNA oligomers containing variously labeled nucleosides can be minimized.  相似文献   

13.
The mediation of radiation-induced damage to dinucleoside monophosphate by oxygen and by glutathione was studied. The sequence isomers d(TpA) and d(ApT) were X-irradiated in aqueous solutions and the products isolated by reverse-phase high-performance liquid chromatography. The main products were characterized by proton NMR spectroscopy. In the presence of oxygen the principal products are the formamido derivative formed by breakdown of thymine and the aldehyde derivative formed at the 5' end of the dinucleoside monophosphate, both nucleoside monophosphates and free bases. In the presence of glutathione, the two stereoisomers of the 5,6-dihydrothymine derivatives are prominent. Radiation-induced damage to d(TpA) and d(ApT) in the solid state was also studied.  相似文献   

14.
ABC excinuclease of Escherichia coli removes 6-4 photoproducts and pyrimidine dimers from DNA by making two single strand incisions, one 8 phosphodiester bonds 5' and another 4 or 5 phosphodiester bonds 3' to the lesion. We describe in this communication a method, which utilizes DNA photolyase from E. coli, pyrimidine dimer endonucleases from M. luteus and bacteriophage T4, and alkali hydrolysis, for analyzing the ABC excinuclease incision pattern corresponding to each of these photoproducts in a DNA fragment. On occasion, ABC excinuclease does not incise DNA exclusively 8 phosphodiester bonds 5' or 4 or 5 phosphodiester bonds 3' to the photoproduct. Both the nature of the adduct (6-4 photoproduct or pyrimidine dimer) and the sequence of neighboring nucleotides influence the incision pattern of ABC excinuclease. We show directly that photolyase stimulates the removal of pyrimidine dimers (but not 6-4 photoproducts) by the excinuclease. Also, photolyase does not repair CC pyrimidine dimers efficiently while it does repair TT or TC pyrimidine dimers.  相似文献   

15.
In toluene-treated cells of Bacillus brevis, newly synthesized RNA is rapidly degraded in a reaction that is inhibited by cyclic guanosine 3':5'-monophosphate (cGMP) and by 1,10-phenanthroline. This appears to be due to a ribonuclease found in cell-free extracts of B. brevis which is inhibited by cGMP and related compounds as well as by 1,10-phenanthroline. The cGMP-sensitive nuclease hydrolyzes synthetic polynucleotides, yielding nucleoside 5'-monophosphates as the sole products, even during the early stages of hydrolysis. Synthetic polynucleotides terminated by a 3'-phosphate are resistant to hydrolysis. While with 3'-hydrolysis of the polymer. The enzyme is therefore an exonuclease that degrades polynucleotides from the 3' end to product 5'-mononucleotides. It also acts on denatured but not on native DNA. Activity is greatest in the presence of Mn2+ and is not affected by the presence of monovalent cations. 1,10-Phenanthroline, but not 1,7-phenanthroline, inhibits the nuclease even when Mn2+ is present in excess. The inhibition of the enzyme by cGMP is noncompetitive, and cGMP itself is not hydrolyzed. The sensitivity of the nuclease to inhibition depends strikingly on the nature of the substrate and is lost when the enzyme is assayed at high pH. These observations suggest that cGMP inhibits the nuclease by combining with an allosteric site on the enzyme. Although cGMP was found to be the most effective inhibitor, other nucleoside 3':5'-monophosphates and derivatives of 5'-GMP can also inhibit the nuclease. Since measurements of cGMP in B. brevis have not revealed detectable amounts (less than 5 times 10-8 M), the substance that modulates the activity of the nuclease under physiological conditions remains to be identified.  相似文献   

16.
Our recent findings suggest that enzymatic hydrolysis of the intradimer phosphodiester bond may constitute the initial step in the repair of UV light-induced cyclobutane pyrimidine dimers in human cells. To examine the susceptibility of this phosphodiester linkage to enzyme-mediated hydrolysis, the trinucleotide d-Tp-TpT was UV-irradiated and the two isomeric compounds containing a cis-syn-cyclobutane dimer were isolated by high performance liquid chromatography and treated with various deoxyribonucleases. Snake venom phosphodiesterase hydrolyzed only the 3'-phosphodiester group in the 5'-isomer (d-T less than p greater than TpT) but was totally inactive toward the 3'-isomer (d-TpT less than p greater than T). In contrast, calf spleen phosphodiesterase only operated on the 3'-isomer by cleaving the 5'-internucleotide bond. Kinetic analysis revealed that (i) the activity of snake venom phosphodiesterase was unaffected by a dimer 5' to a phosphodiester linkage, (ii) the action of calf spleen phosphodiesterase was partially inhibited by a dimer 3' to a phosphodiester bond, and (iii) Escherichia coli phr B-encoded DNA photolyase reacted twice as fast with d-T less than p greater than TpT as with d-TpT less than p greater than T. Mung bean nuclease, nuclease S1, and nuclease P1 all cleaved the 5'-internucleotide linkage, but not the intradimer phosphodiester bond, in d-TpT less than p greater than T. Both phosphate groups in d-T less than p greater than TpT were refractory to mung bean nuclease or nuclease S1. Incubation of d-T less than p greater than TpT with nuclease P1, however, generated the novel compound dT less than greater than d-pTpT containing a severed intradimer phosphodiester linkage. Accordingly, nuclease P1 represents the first purified enzyme known to hydrolyze an intradimer phosphodiester linkage.  相似文献   

17.
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.  相似文献   

18.
Phage T4 polynucleotide kinase (EC 2.7.1.78) proved incapable of catalyzing the phosphorylation of thymidylyl-(3'----5')-thymidine containing either a cis-syn-cyclobutane pyrimidine dimer (d-T less than p greater than T) or a 6-4'-[pyrimidin-2'-one]pyrimidine photoproduct (d-T[p]-T), and similarly the UV-modified compounds of (dT)3 bearing either photoproduct at their 5'-end (d-T less than p greater than TpT and d-T[p]TpT). In contrast, the 3'-structural isomers of these trinucleotides (d-TpT less than p greater than T and d-TpT[p]T) were phosphorylated at the same rate as the parent compound. These phosphorylatable lesion-containing oligonucleotides are quantitatively released from UV-irradiated poly(dA):poly(dT) by enzymatic hydrolysis with snake venom phosphodiesterase and alkaline phosphatase (Liuzzi, M., Weinfeld, M., and Paterson, M. C. (1989) J. Biol. Chem. 264, 6355-6363). By combining this digestion regimen with phosphorylation by polynucleotide kinase and [gamma-32P]ATP, pyrimidine dimers were quantitated at the fmol level following exposure of poly(dA):poly(dT) and herring sperm DNA to biologically relevant UV fluences. The rate of dimer induction in the synthetic polymer, approximately 10 dimers/10(6) nucleotides/Jm-2, was in close agreement with that obtained by conventional methods. Dimers were induced at one-fourth of this rate in the natural DNA. Further treatment of the phosphorylated oligonucleotides derived from irradiated herring sperm DNA with nuclease P1 released the labeled 5'-nucleotide, thus permitting analysis of the nearest-neighbor bases 5' to the lesions. We observed a ratio for pyrimidine-to-purine bases of almost 6:1, implicating tripyrimidine stretches as hotspots for UV-induced DNA damage.  相似文献   

19.
A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号