首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.  相似文献   

2.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

3.
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.  相似文献   

4.
Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least 12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials conducted to treat graft-versus-host-disease (GVHD) and cardiovascular diseases are highlighted. Clinical application of MSC are mainly attributed to their important four biological properties- the ability to home to sites of inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs therapy from bench side to bedside.  相似文献   

5.
Mesenchymal-derived stromal or progenitor cells, commonly called “MSCs,” have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.  相似文献   

6.
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.  相似文献   

7.
Mesenchymal stem cell (MSC) therapy is the most clinically advanced form of cell therapy, second to hematopoietic stem cell transplants. To date, MSC have been used for immune modulation in conditions such as Graft Versus Host Disease (GVHD) and Crohn's Disease, for which Phase III clinical trials are currently in progress. Here, we review the immunological properties of MSC and make a case for their use in treatment of Charcot-Marie-Tooth disease type 1 (CMT1), a group of inherited peripheral neuropathies. CMT1 is characterized by demyelination and aberrant immune activation making this condition an ideal target for exploration of MSC therapy, given the ability of these cells to promote sheath regeneration as well as suppress inflammation. Studies supporting this hypothesis will be presented and placed into the context of other cell-based approaches that are theoretically feasible. Given that MSCs selectively home to areas of inflammation, as well as exert effects in an allogeneic manner, the possibility of an "off the shelf" therapy for CMT1 will be discussed.  相似文献   

8.
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.  相似文献   

9.
The study of the dynamic of morphological changes in the brain after ischemic stroke is very important for the preclinical trial of mesenchymal stem cell (MSC) therapy for this widespread disease. Experiments were carried out in inbred Wistar-Kyoto rats. MSCs were isolated, expanded in culture, and labeled with the vital fluorescent dye PKH-26. Animals were subjected to middle cerebral artery occlusion (MCAO), followed by an injection of 5 × 106 rat MSCs into the tail vein on the day of MCAO. Control group animals received PBS injection (negative control). Animals were sacrificed at 1, 2, 3, and 5 days and 1, 2, 4, and 6 weeks after the operation. MSCs were revealed in the brain on the third day after transplantation as being distributed around brain vessels both in the ipsilateral and contralateral hemispheres. This pattern of distribution remained unchanged throughout six weeks of observation. It was demonstrated that the inflammation process and scar formation in the cell therapy group were progressing at a rate 25–30% faster than in the control group. MSC transplantation stimulated endogenous stem cell proliferation in the subependimal zone of lateral ventricles (subventricular zone). In addition, MSC injection caused a neuroprotecting effect; most penumbra neurons retained their structure in cell therapy group, whereas in control group, animal penumbra neurons died or showed signs of serious damage.  相似文献   

10.
The potency of mesenchymal stem cells (MSCs) for tissue repair and regeneration is mainly based on their ability to secret beneficial molecules. Administration of MSCs has been proposed as an innovative approach and is proved by a number of clinical trials to a certain degree for the therapy of many diseases including Parkinson’s disease (PD). However, the efficacy of MSCs alone is not significant. We investigated the effect of neurotrophic tyrosine receptor kinase 1 (NTRK1) overexpressed peripheral blood MSCs (PB-MSCs) on PD rat model. NTRK1 was overexpressed in PB-MSCs, which were then injected into PD rat model, Dopaminergic (DA) neuron regeneration and rotational performance was assessed. We found that DA neuron repair was increased in lesion site, rotational performance was also improved in MSC transplanted PD rat, with most potent effect in NTRK1 overexpressed PB-MSC transplanted PD rat. Our results indicate that overexpression of NTRK1 in MSCs could be an optimized therapeutic way via MSCs for PD treatment.  相似文献   

11.
Mesenchymal stem cell (MSC)-based therapy has great potential for tissue regeneration. However, being able to monitor the in vivo behavior of implanted MSCs and understand the fate of these cells is necessary for further development of successful therapies and requires an effective, non-invasive and non-toxic technique for cell tracking. Super paramagnetic iron oxide (SPIO) is an idea label and tracer of MSCs. MRI can be used to follow SPIO-labeled MSCs and has been proposed as a gold standard for monitoring the in vivo biodistribution and migration of implanted SPIO-labeled MSCs. This review discusses the biological effects of SPIO labeling on MSCs and the therapeutic applications of local or systemic delivery of these labeled cells.  相似文献   

12.
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.  相似文献   

13.
Adult bone marrow mesenchymal stromal cells (MSCs) have cross-functional, intrinsic potency that is of therapeutic interest. Their ability to regenerate bone, fat, and cartilage, modulate the immune system, and nurture the growth and function of other bone marrow hematopoietic stem/progenitor cells have all been evaluated by transplant applications of MSCs. These applications require the isolation and expansion scaled cell production. To investigate biophysical properties of MSCs that can be feasibly utilized as predictors of bioactivity during biomanufacturing, we used a low-density seeding model to drive MSCs into proliferative stress and exhibit the hallmark characteristics of in vitro aging. A low-density seeding method was used to generate MSCs from passages 1–7 to simulate serial expansion of these cells to maximize yield from a single donor. MSCs were subjected to three bioactivity assays in parallel to ascertain whether patterns in MSC age, size, and shape were associated with the outcomes of the potency assays. MSC age was found to be a predictor of adipogenesis, while cell and nuclear shape was strongly associated to hematopoietic-supportive potency. Together, these data evaluate morphological changes associated with cell potency and highlight new strategies for purification or alternatives to assessing MSC quality.  相似文献   

14.
Background aimsMesenchymal stromal cells (MSCs) have been studied as cell therapy to treat a vast array of diseases. In clinical MSC production, the isolated cells must undergo extensive ex vivo expansion to obtain a sufficient dose of MSCs for the investigational treatment. However, extended tissue culture is fraught with potential hazards, including contamination and malignant transformation. Changes of gene expression with prolonged culture may alter the therapeutic potential of the cells. Increasing the recovery of MSCs from the freshly harvested bone marrow allowing for less ex vivo expansion would represent a major advance in MSC therapy.MethodsHuman bone marrow cells from eight healthy donors were processed using a marrow filter device and, in parallel, using buoyant density centrifugation by two independent investigators. The initial nucleated cell recovery and the final yield, immunophenotype and trilineage differentiation potential of second-passage MSCs were examined.ResultsThe marrow filter device generated significantly greater initial cell recovery requiring less investigator time and resulted in approximately 2.5-fold more MSCs after the second passage. The immunophenotype and differentiation potential of MSCs isolated using the two methods were equivalent and consistent with the defining criteria. The two independent investigators generated comparable results.ConclusionsThis novel filter device is a fast, efficient and reliable system to isolate MSCs and should greatly expedite pre-clinical and clinical investigations of MSC therapy.  相似文献   

15.
We recently demonstrated a novel effective therapeutic regimen for treating hamster heart failure based on injection of bone marrow mesenchymal stem cells (MSCs) or MSC-conditioned medium into the skeletal muscle. The work highlights an important cardiac repair mechanism mediated by the myriad of trophic factors derived from the injected MSCs and local musculature that can be explored for non-invasive stem cell therapy. While this therapeutic regimen provides the ultimate proof that MSC-based cardiac repair is mediated by the trophic actions independent of MSC differentiation or stemness, the trophic factors responsible for cardiac regeneration after MSC therapy remain largely undefined. Toward this aim, we took advantage of the finding that human and porcine MSCs exhibit species-related differences in expression of trophic factors. We demonstrate that human MSCs when compared to porcine MSCs express and secrete 5-fold less vascular endothelial growth factor (VEGF) in conditioned medium (40 ± 5 and 225 ± 17 pg/ml VEGF, respectively). This deficit in VEGF output was associated with compromised cardiac therapeutic efficacy of human MSC-conditioned medium. Over-expression of VEGF in human MSCs however completely restored the therapeutic potency of the conditioned medium. This finding indicates VEGF as a key therapeutic trophic factor in MSC-mediated myocardial regeneration, and demonstrates the feasibility of human MSC therapy using trophic factor-based cell-free strategies, which can eliminate the concern of potential stem cell transformation.  相似文献   

16.
Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells(MSCs).Although MSCs are most commonly grown in media containing fetal calf serum,human platelet lysate(PL) offers an effective alternative.Bone marrow- derived MSCs grown in PLcontaining media display faster proliferation whilst maintaining good osteogenic differentiation capacity.Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo.In an alternative approach,nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices.Even though methods to coat scaffolds with PL vary,in vitro studies suggest that PL allows for MSC adhesion,migration and differentiation inside these scaffolds.Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo.This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration.To minimise inconsistency between the studies,further work is required towards standardisation of PL preparation in terms of the starting material,platelet concentration,leukocyte depletion,and the method of platelet lysis.PL quality control procedures and its "potency" assessment are urgently needed,which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation.Furthermore,different PL formulations could be tailor-made for specific bone repair indications.Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.  相似文献   

17.

Background

Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi), is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs) has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease.

Methods and Results

We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET). Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS). Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model.

Conclusions

We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.  相似文献   

18.
Flu vaccines are partially protective in infants and elder people. New adjuvants such as immunostimulatory oligonucleotides (ODNs) are strong candidates to solve this problem, because a combination with several antigens has demonstrated effectiveness. Here, we report that IMT504, the prototype of a major class of immunostimulatory ODNs, is a potent adjuvant of the influenza vaccine in young adult and elderly rats. Flu vaccines that use virosomes or whole viral particles as antigens were combined with IMT504 and injected in rats. Young adult and elderly animals vaccinated with IMT504-adjuvated preparations reached antibody titers 20-fold and 15-fold higher than controls, respectively. Antibody titers remained high throughout a 120 day-period. Animals injected with the IMT504-adjuvated vaccine showed expansion of the anti-hemagglutinin antibody repertoire and a significant increase in the antibody titer with hemagglutination inhibition capacity when confronted to viral strains included or not in the vaccine. This indicates that the addition of IMT504 in flu vaccines may contribute to the development of significant cross-protective immune response against shifted or drifted flu strains.  相似文献   

19.
Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment.  相似文献   

20.
Mesenchymal stem cells (MSCs) may offer therapeutic benefit in the setting of sepsis and endotoxemia. Previous studies suggest that MSCs from female donors may possess better protective capabilities than their male counterparts. The present study examined whether female MSCs may offer a greater protective advantage in the setting of endotoxemic cardiac dysfunction compared with male MSCs. Adult male Sprague-Dawley rats were injected intraperitoneally with LPS and then treated with intraperitoneal injections of either saline, female MSCs, or male MSCs. Hearts and serum were then collected for analysis of myocardial function, myocardial protein, and myocardial and serum cytokines. Compared with male MSC or vehicle-treated animals, female MSC treatment resulted in greater preservation of myocardial function (P < 0.001). Serum and myocardial levels of all measured cytokines were comparable between rats given MSCs from male or female donors but substantially improved over rats given vehicle (P < 0.05). Reduced myocardial inflammation correlated with reduced levels of phosphorylated p38 MAPK expression in the myocardium of animals injected with MSCs of either sex (P < 0.05). The Bcl-xL/Bax ratio was increased to a greater extent following treatment with female MSCs vs. male MSCs (P < 0.05). Intraperitoneal administration of MSCs is effective in limiting myocardial inflammation and dysfunction in the rat endotoxemia model. Compared with treatment with their male counterparts, MSC treatment from female donors is associated with greater cardiac protection against acute endotoxemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号