首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to gain a better understanding of rice flower development, a rice flower mutant supernumerary lodicules (snl), which was identified from ethyl methane sulfonate (EMS)-treated Jinhui10 (Oryza sativa L. ssp. indica) was used in the present study. In the snl mutant, the palea obtained lemma identity, additional glume-like organs formed, lodicules increased and elongated, stamens decreased, and a few aberrant carpels formed. These phenotypes suggest that SNL is involved in the entire rice flower development. SNL was mapped between two simple sequence repeat markers RM3512 and RM1342 on chromosome 2, an approximate 800 kb region, and it co-segregated with SSR215. We conclude that SNL is a novel gene involved in flower development in rice. The present study will be useful for further cloning of the SNL gene, which will contribute to the elucidation of rice flower development.  相似文献   

2.
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice   总被引:21,自引:0,他引:21  
We analyzed recessive mutants of two homeotic genes in rice, SUPERWOMAN1 (SPW1) and DROOPING LEAF (DL). The homeotic mutation spw1 transforms stamens and lodicules into carpels and palea-like organs, respectively. Two spw1 alleles, spw1-1 and spw1-2, show the same floral phenotype and did not affect vegetative development. We show that SPW1 is a rice APETALA3 homolog, OsMADS16. In contrast, two strong alleles of the dl locus, drooping leaf-superman1 (dl-sup1) and drooping leaf-superman2 (dl-sup2), cause the complete transformation of the gynoecium into stamens. In these strong mutants, many ectopic stamens are formed in the region where the gynoecium is produced in the wild-type flower and they are arranged in a non-whorled, alternate pattern. The intermediate allele dl-1 (T65), results in an increase in the number of stamens and stigmas, and carpels occasionally show staminoid characteristics. In the weakest mutant, dl-2, most of the flowers are normal. All four dl alleles cause midrib-less drooping leaves. The flower of the double mutant, spw1 dl-sup, produces incompletely differentiated organs indefinitely after palea-like organs are produced in the position where lodicules are formed in the wild-type flower. These incompletely differentiated organs are neither stamens nor carpels, but have partial floral identity. Based on genetic and molecular results, we postulate a model of stamen and carpel specification in rice, with DL as a novel gene controlling carpel identity and acting mutually and antagonistically to the class B gene, SPW1.  相似文献   

3.
水稻畸形颖壳突变体ah是双胚苗品系W2555中自然突变产生的。该突变体的内外稃畸形,退化;雄蕊雌蕊化,雌蕊败育;浆片同源转化为类内外稃的结构,推测该突变体可能影响B功能基因的正常发育。与野生型相比,突变体的小穗分支稀疏,每级枝梗上颖花数目减少,一般为4~6朵;小穗顶端的颖花经常不能成熟,表现为颖花始终泛白,不能转绿,因此该突变也影响花序分生组织的发育。进一步的研究证明,该突变体的发育受外界环境的影响。突变性状的遗传分析表明,该突变体由单隐性基因控制。  相似文献   

4.
水稻(Oryza sativa)是重要的粮食作物, 其花器官的正常起始及形态建成直接影响水稻的产量。为了深入分析水稻小花发育的调控机理, 从已构建的水稻EMS诱变突变体库中筛选获得了一个花器官异常发育的突变体apl (abnormal palea and lodicules)。与野生型相比, apl突变体小花的内稃膨大, 浆片伸长或转换成稃状结构, 雄蕊数目减少, 表明APL基因可能参与调控水稻内稃、浆片和雄蕊等多轮花器官属性的建成。遗传学分析表明, 该突变体性状受1个隐性单基因控制。通过图位克隆, 将APL基因初步定位于1号染色体上。该工作为深入研究APL基因在水稻花器官形态建成中的作用机制奠定了基础。  相似文献   

5.
Characterization of the Rice Floral Organ Number Mutant fon3   总被引:1,自引:0,他引:1  
A spontaneous rice mutant named floral organ number 3 (fon3) had major mutations in floral organ numbers. Genetic analysis indicated thatfon3 acted as a single recessive gene. Microscopic observation showed that the number of floral organs infon3 increased centripetally. For example, the number of pistils was the more frequently increased than organs in the outer whorls. Homeotic conversion of lodicules and glumes into palea/lemma-like organs was observed in some flowers. Scanning electron microscopy observation showed that the size of flower meristems was maintained the same or similar until the lemma primordium started to differentiate, at which time the floral meristem became enlarged, suggesting abnormal development of the inner whorls of rice florets. The relationship offon3 with other similar rice mutants is discussed.  相似文献   

6.
A spontaneous rice mutant named floral organ number 3 (fon3) had major mutations in floral organ numbers. Genetic analysis indicated that fort3 acted as a single recessive gene. Microscopic observation showed that the number of floral organs infon3 increased centripetally. For example, the number of pistils was the more frequently increased than organs in the outer whorls. Homeotic conversion of lodicules and glumes into palea/lemma-like organs was observed in some flowers. Scanning electron microscopy observation showed that the size of flower meristems was maintained the same or similar until the lemma primordium started to differentiate, at which time the floral meristem became enlarged, suggesting abnormal development of the inner whorls of rice florets. The relationship of fort3 with other similar rice mutants is discussed.  相似文献   

7.
Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference   总被引:22,自引:0,他引:22  
Xiao H  Wang Y  Liu D  Wang W  Li X  Zhao X  Xu J  Zhai W  Zhu L 《Plant molecular biology》2003,52(5):957-966
  相似文献   

8.
一个新的水稻花器官数目突变体fon(t)的鉴定及分析   总被引:3,自引:0,他引:3  
水稻花器官数目突变体 fon(t)是在单倍体与二倍体的杂交 F2代发现的,经过多代种植,已稳定遗传。以 fon(t)为父本,以日本晴、93?11 和 R527 为母本配制杂交组合进行遗传分析,根据 F2代表型及χ2测验结果表明,该突变体的性状是由单隐性基因控制的。因为对花器官数目突变体曾有报道如 fon1、fon2 和 fon3,所以该突变体暂定名为 fon(t)。该突变体导致内外稃开裂,花器官外露;雄蕊和雌蕊的数目均增多,雄蕊一般 6~9 枚,雌蕊 1~2 枚;浆片同源转化为类内稃的结构;个别的花器官中还出现花丝上伸出类柱头的结构,浆片上部同源转化为类柱头或者类雄蕊的结构。研究结果表明,fon(t)基因可能影响水稻第三、四轮花器官的数目以及第二轮浆片的发育。  相似文献   

9.
Abstract

Homeotic mutations can affect the genetic architecture of flower structure. Some genes have been identified that specify shoot and floral meristem development. ABCDE and floral quartet are two widely accepted models that explain how genes interact to form all the whorls of a flower. In the current study, we identified an spp1 (SUPER PISTIL 1) mutant controlled by a single recessive nuclear gene mapping to chromosome 6 near RM50. Compared to wild type, spp1 mutants showed similar agronomic traits, except for panicle length and 1000-grain weight, which were significantly lower in the spp1 mutant plants. The mutation in the SPP1 gene induced complete homeotic transformations of paleae, lodicules, and stamens into carpelloid structures. Although lemmata were only marginally affected in the spp1 mutants, they developed a stigma-like structure on the top instead of an awn. Interestingly, stigma-like structures were also observed at the base of panicle branches. From the results, we propose that the SPP1 gene plays an important role in specifying the identity of lemmata/paleae, lodicules, stamens, and inflorescence meristem in rice. Identification of this mutant not only provides further evidence for validity of the ABCDE model in monocots, but also contributes to the understanding of meristem development.  相似文献   

10.
superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice   总被引:1,自引:0,他引:1  
Cleistogamy is an efficient strategy for preventing gene flow from genetically modified (GM) crops. We identified a cleistogamous mutant of rice harbouring a missense mutation (the 45th residue isoleucine to threonine; I45T) in the class-B MADS-box gene SUPERWOMAN1 ( SPW1 ), which specifies the identities of lodicules (equivalent to petals) and stamens. In the mutant, spw1-cls , the stamens are normal, but the lodicules are transformed homeotically to lodicule–glume mosaic organs, thereby engendering cleistogamy. Since this mutation does not affect other agronomic traits, it can be used in crosses to produce transgenic lines that do not cause environmental perturbation. Molecular analysis revealed that the reduced heterodimerization ability of SPW1I45T with its counterpart class-B proteins OsMADS2 and OsMADS4 caused altered lodicule identity. spw1-cls is the first useful mutant for practical gene containment in GM rice. Cleistogamy is possible in many cereals by engineering class-B floral homeotic genes and thereby inducing lodicule identity changes.  相似文献   

11.
The degree to which the eudicot-based ABC model of flower organ identity applies to the other major subclass of angrosperms, the monocots, has yet to be fully explored. We cloned silky1 (si1), a male sterile mutant of Zea mays that has homeotic conversions of stamens into carpels and lodicules into palea/lemma-like structures. Our studies indicate that si1 is a monocot B function MADS box gene. Moreover, the si1 zag1 double mutant produces a striking spikelet phenotype where normal glumes enclose reiterated palea/lemma-like organs. These studies indicate that B function gene activity is conserved among monocots as well as eudicots. In addition, they provide compelling developmental evidence for recognizing lodicules as modified petals and, possibly, palea and lemma as modified sepals.  相似文献   

12.
一种多雌蕊小麦花的发生和发育   总被引:6,自引:1,他引:5  
  相似文献   

13.
In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we expressed OsMADS3, a rice (Oryza sativa L.) AGAMOUS(AG) ortholog, in rice plants under the control of an Actin1 promoter. As a consequence of the ectopic expression of the OsMADS3, lodicules were homeotically transformed into stamens. In total, the transformation of lodicules to staminoid organs was observed in 18 out of 26 independent transgenic lines. In contrast to the almost complete transformation occurring in lodicules, none of the transgenic plants exhibited any morphological alterations in the palea or the lemma. Our results confirmed the prediction that the lodicule is an equivalent of a dicot petal and that the ABC model can be applied to rice at least for organ specification in lodicules and stamens.  相似文献   

14.
15.
在水稻遗传转化过程中发现一个不含外源基因的条斑和颖花异常的双突变体。该突变体的茎、叶、穗出现条斑。在分蘖盛期,一些叶片开始分岔或卷曲;花器官数目增多,表现为多内外稃,叶片状浆片,或浆片增大,雌雄蕊增多,颖花开裂。透射电镜对叶片白色组织细胞超微结构观察,发现细胞壁内陷,质体结构异常,不能发育出正常叶绿体所具有的片层和类囊体。叶绿素总含量和净光合速率明显低于野生型。突变体绿色组织部分中的细胞生长正常,但细胞较大。利用扫描电镜对花器官形态发生过程进行观察,雄蕊原基发育严重不同步,原基大小也不一样;心皮原基较小。  相似文献   

16.
We report a recessive mutation of rice, aberrant panicle organization 1 (apo1), which severely affects inflorescence architecture, floral organ identity, and leaf production rate. In the wild-type inflorescence, the main-axis meristem aborts after forming 10-12 primary branch primordia. However, in apo1, the main-axis meristem was converted to a spikelet meristem after producing a small number of branch primordia. In addition, the branch meristems in apo1 became spikelet meristems earlier than in wild type. Therefore, in the inflorescence, the apo1 mutation caused the precocious conversion of the meristem identity. In the apo1 flower, lodicules were increased at the expense of stamens, and carpels were formed indeterminately by the loss of meristem determinacy. Vegetative development is also affected in the apo1. Leaves were formed rapidly throughout the vegetative phase, indicating that APO1 is also involved in temporal regulation of leaf production. These phenotypes suggest that the APO1 plays an important role in the temporal regulation of both vegetative and reproductive development.  相似文献   

17.
18.
19.
《Annals of botany》1996,77(6):675-683
In this paper on the flower mechanics of the grasses, the morphological and cytological processes leading to flower opening and anther exsertion are studied.At anthesis synchronous cell extension in both the lodicules and the filaments open the flower and exsert the anthers, respectively. In the lodicules all the cells extend, except the vascular tissues. In the filaments extension is limited to the epidermis and one or two subepidermal cell layers, whereas the more centrally located parenchyma and the vascular tissues are disrupted. Ultrastructural aspects of the rapid vacuolations, necessary for these extensions, are studied using comparisons between TEM and high-resolution SEM.  相似文献   

20.
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull‐like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1‐green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号