首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coupling of excitatory amino acid receptors to the formation of nitric oxide (NO) from arginine during the postnatal development of rat cerebellum was assayed in slice preparations by measuring cyclic GMP accumulation. In the immature tissue, N-methyl-D-aspartate (NMDA) and glutamate were highly efficacious agonists, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and quisqualate evoked only small responses. The effect of glutamate at all concentrations tested (up to 10 mM) was abolished by the NMDA antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801). In adult slices, AMPA and quisqualate were much more effective and their effects were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione, an antagonist for ionotropic non-NMDA receptors, whereas the apparent efficacy of NMDA was greatly reduced. The major changes took place between 8 and 14 days postnatum and, in the case of NMDA, part of the loss of sensitivity appeared to reflect a decline in the ambient levels of glycine with age. Moreover, a component of the response to glutamate in the adult was resistant to MK-801. Cyclic GMP accumulations induced by NMDA and non-NMDA agonists alike were Ca(2+)-dependent and could be antagonized by competitive NO synthase inhibitors in an arginine-sensitive manner, indicating that they are all mediated by NO formation. With one of the inhibitors, L-NG-nitroarginine, a highly potent component (IC50 = 6 nM) evident in slices from rats of up to 8 days old was lost during maturation, indicating that there may be a NO synthase isoform which is prominent only in the immature tissue. Cyclic GMP levels in adult slices under "basal" conditions were reduced markedly by blocking NMDA receptors, by inhibiting action potentials with tetrodotoxin, or by NO synthase inhibition, suggesting that the endogenous transmitter released during spontaneous synaptic activity acts mainly through NMDA receptors to trigger NO formation.  相似文献   

2.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

3.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

4.
Abstract: The role of nitric oxide (NO) in the control of 5-hydroxytryptamine (5-HT)-induced release of substance P was investigated in rat spinal cord in vitro. 5-HT facilitated the 60 m M K+-evoked release of substance P-like immunoreactive materials (SPLI) from the superfused rat dorsal spinal cord slices without affecting spontaneous SPLI release. The facilitatory effect of 5-HT was significantly inhibited by ICS 205-930 or granisetron (potent and specific 5-HT3 receptor antagonists), by N G-monomethyl- l -arginine (NMMA, a NO synthase inhibitor), and by methylene blue or 1 H -[1,2,4]oxadiazolo[4,3- a ]quinoxaline-1-one (MB or ODQ, respectively; both are inhibitors of soluble guanylyl cyclase) and was mimicked by 2-methylserotonin (2-m-5-HT, a selective 5-HT3 receptor agonist), l -arginine (a precursor of NO), or 8-bromo-cyclic GMP. NMMA, MB, or ODQ inhibited the 2-m-5-HT-induced increase of cyclic GMP levels in the rat dorsal spinal cord slices. These data suggest that the facilitatory effect of 5-HT on the release of SPLI is mediated by the 5-HT3 receptor and that the intracellular signaling is mediated via NO by an increase in cyclic GMP production.  相似文献   

5.
Nitric oxide (NO) acts as a messenger molecule in the CNS by activating soluble guanylyl cyclase. Rat brain synaptosomal NO synthase was stimulated by Ca2+ in a concentration-dependent manner with half-maximal effects observed at 0.3 microM and 0.2 microM when its activity was assayed as formation of NO and L-citrulline, respectively. Cyclic GMP formation was apparently inhibited, however, at Ca2+ concentrations required for the activation of NO synthase, indicating a down-regulation of the signal in NO-producing cells. Purified synaptosomal guanylyl cyclase was not inhibited directly by Ca2+, and the effect was not mediated by a protein binding to guanylyl cyclase at low or high Ca2+ concentrations. In cytosolic fractions, the breakdown of cyclic GMP, but not that of cyclic AMP, was highly stimulated by Ca2+, and 3-isobutyl-1-methylxanthine did not block this reaction effectively. The effects of Ca2+ on cyclic GMP hydrolysis and on apparent guanylyl cyclase activities were abolished almost completely in the presence of the calmodulin antagonist calmidazolium, whose effect was attenuated by added calmodulin. Thus, a Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase is highly active in synaptic areas of the brain and may prevent elevations of intracellular cyclic GMP levels in activated, NO-producing neurons.  相似文献   

6.
Abstract: The rat 5-hydroxytryptamine2C (5-HT2C) receptor was identified as N -glycosylated polypeptide of 60-kDa apparent molecular mass using antibodies against its putative third and fourth (C-terminal) cytoplasmic domain. To show that the polypeptides detected on western blots and by immunoprecipitation represent the 5-HT2C receptor, binding studies of the 5-HT2C ligand [3H]-mesulergine to immunoprecipitates from extracts of pig choroid plexus were performed. We demonstrate the presence of a signal sequence that was cleaved off during membrane insertion resulting in a 38-kDa polypeptide. During further maturation, the receptor was N -glycosylated at two sites via a 48-kDa intermediate. This intermediate was far more abundant in choroid plexus than in hippocampus and may represent an intracellular receptor reserve. After transfection of 5-HT2C cDNAs into cultured cells, polypeptides were observed that differed from the ones found in vivo due to abnormal N -glycosylation and possibly other alterations depending on the system used. Thus the 5-HT2C receptor expressed in cell lines may also differ in function from the receptor in its native tissue.  相似文献   

7.
Abstract: The serotonin 5-HT2C receptor (formerly designated the 5-HT1C receptor) of the choroid plexus triggers phosphoinositide turnover. In the present study, we demonstrate that receptor activation also triggers the formation of cyclic GMP (cGMP). Application of 1 µM 5-HT to porcine choroid plexus tissue slices resulted in stimulation of cGMP formation to a maximum of five-fold basal level, with an EC50 of 11 nM. This response was not inhibited by muscarinic or β-adrenergic receptor antagonists. Serotonin receptor antagonists inhibited cGMP formation with apparent Ki values of 1.3 (mianserin), 200 (ketanserin), and 5,500 (spiperone) nM, respectively. Neither serotonin-stimulated cGMP formation nor PI turnover was inhibited by pertussis toxin pretreatment. Preliminary biochemical studies suggested that serotonin-stimulated cGMP formation was calcium, phospholipase A2, and lipoxygenase dependent, as incubation in low calcium buffers or inclusion of the phospholipase A2 or lipoxygenase inhibitors p-bromophenacyl bromide or BW 755c resulted in significant reduction of cGMP formation. The present results suggest that in addition to triggering phosphoinositide turnover, choroid plexus serotonin 5-HT2C receptors trigger cGMP formation in a calcium-sensitive manner.  相似文献   

8.
Abstract: Stable transfection of the human neuroblastoma cell line SH-SY5Y with the human 5-hydroxytryptamine2A (5-HT2A) or 5-HT2C receptor cDNA produced cell lines demonstrating ligand affinities that correlated closely with those for the corresponding endogenous receptors in human frontal cortex and choroid plexus, respectively. Stimulation of the recombinant receptors by 5-HT induced phosphoinositide hydrolysis with higher potency but lower efficacy at the 5-HT2C receptor (pEC50 = 7.80 ± 0.06) compared with the 5-HT2A receptor (pEC50 = 7.30 ± 0.08). Activation of the 5-HT2A receptor caused a transient fourfold increase in intracellular Ca2+ concentration. Whole-cell recordings of cells clamped at ?50 mV demonstrated a small inward current (2 pA) in response to 10 µM 5-HT for both receptors. There were no differences in potency or efficacy of phosphoinositide hydrolysis among four hallucinogenic [d-lysergic acid diethylamide (LSD), 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI), 5-methoxy-N,N-dimethyltryptamine, and mescaline] and three nonhallucinogenic drugs (m-chlorophenylpiperazine, quipazine, and ergotamine). Comparison of equipotent doses producing 20% of the maximal response induced by 5-HT revealed selective activation of the 5-HT2A receptor by LSD and to a lesser degree by DOI, mescaline, and ergotamine. Quipazine and 5-methoxy-N,N-dimethyltryptamine were relatively nonselective, whereas m-chlorophenylpiperazine selectively activated the 5-HT2C receptor. It is unlikely therefore that hallucinosis is mediated primarily by activity at the 5-HT2C receptor, whereas activity at the 5-HT2A receptor may represent an important but not unique mechanism associated with hallucinogenic drug action.  相似文献   

9.
Rat and human serotonin 5-HT2C receptor isoforms were evaluated for agonist-independent activation of inositol phosphate production in COS-7 cells. The nonedited isoform (5-HT(2C-INI)) displayed the greatest basal activity, stimulating inositol phosphate production fourfold over the fully edited isoform (5-HT(2C--VGV)). All of the other isoforms tested displayed intermediate levels of basal activity. Decreasing receptor expression levels by 50% produced a parallel decrease in basal activity. 5-HT stimulated inositol phosphate production twofold over basal levels through the 5-HT(2C-INI) receptor and eightfold over basal levels through the 5-HT(2C-VGV) receptor but produced similar maximal levels of inositol phosphate. 5-HT competition for [3H]mesulergine binding to 5-HT(2C-INI) best fit a two-site analysis with K(H) = 7.6 nM and K(L) = 160 nM, whereas 5-HT(2C-VGV) best fit a one-site model with Ki = 163 nM. [3H]5-HT labeled 36% of the total population of 5-HT(2C-INI) receptors labeled by [3H]mesulergine but only 12% of 5-HT(2C-VGV) receptors. [H]5-HT K(D) values increased from 5.1 nM for 5-HT(2C-INI) to 20 nM for 5-HT(2C-VGV). [3H]Mesulergine K(D) values were the same for both isoforms. 5-HT EC50 values for inositol phosphate production increased from 6.1 nM for 5-HT(2C-INI) to 30 nM for 5-HT(2C-VGV). These results demonstrate that RNA editing decreases 5-HT2C receptor basal activity, agonist affinity, and potency, indicating that RNA editing may play a role in regulating serotonergic signal transduction and response to drug therapy.  相似文献   

10.
[3H]Quipazine was used to label binding sites in rat brain membranes that display characteristics of a 5-hydroxytryptamine3 (5-HT3) receptor. The radioligand binds with high affinity (KD, 1.2 +/- 0.1 nM) to a saturable population of sites (Bmax, 3.0 +/- 0.4 pmol/g of tissue) that are differentially located in the brain. Specific [3H]quipazine binding is not affected by guanine or adenine nucleotides. ICS 205-930, BRL 43964, Lilly 278584, and zacopride display less than nanomolar affinity for these sites whereas MDL 72222 is approximately one order of magnitude less potent. The pharmacological profile of the binding site is in excellent agreement with that of 5-HT3 receptors characterized in peripheral physiological models. We conclude that [3H]quipazine labels a 5-HT3 receptor in the rat CNS.  相似文献   

11.
Angiotensin II (AngII) elicited a rapid and dose-related production of intracellular cyclic GMP (cGMP) in murine neuroblastoma N1E-115 cells. The agonist-induced rise in cGMP levels was blocked in a monophasic fashion by the AT1-selective antagonist DuP 753 or the nonselective antagonist [Sarc1,Ile8]-AngII, and both antagonists produced complete inhibition of the cGMP response elicited by submaximal concentrations of AngII. In contrast, the AT2-selective antagonist CGP 42112A inhibited the cGMP response biphasically. At lower antagonist concentrations, agonist-induced cGMP production was only partially inhibited, whereas complete inhibition was observed only when the concentration of CGP 42112A was increased sufficiently to interact with both AT1 and AT2 receptor subtypes. AngII also increased inositol trisphosphate (InsP3) levels in N1E-115 cells. However, the InsP3 response was mediated exclusively by the AT1 receptor subtype because it was inhibited by lower, AT1-selective concentrations of DuP 753, whereas only higher, nonselective concentrations of CGP 42112A were effective. Finally, the stimulatory effects of AngII on cGMP production appeared to be mediated by the intracellular formation of nitric oxide in that they were attenuated by the nitric oxide synthase inhibitor, N-monomethyl-L-arginine. Collectively, these results suggest that the AngII-elicited rise in cGMP levels may require an interaction between AT1-mediated mobilization of intracellular Ca2+, as well as some partial role of AT2 receptors.  相似文献   

12.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

13.
Ultrastructure of the 5-Hydroxytryptamine3 Receptor   总被引:1,自引:0,他引:1  
Abstract: We have determined the ultrastructure of 5-hydroxytryptamine3 (5-HT3) serotonin receptors purified from NG108-15 mouse neuroblastoma × rat glioma cells by electron microscopic examination of receptor particles embedded in uranyl acetate stain and metal replicas of rapidly frozen receptors. The 5-HT3 receptor can be modelled as a cylinder 11 nm in length and 8 nm in diameter with a closed end and a central cavity 3 nm in diameter. Analysis of the rotational symmetry of single receptor particles indicates that the 5-HT3 receptor is composed of five subunits arranged symmetrically around a central cavity. Together with evidence obtained for related proteins in other studies using ultrastructural, biochemical, or electrophysiological methods, our observations suggest that all members of the ligand-gated ion channel superfamily may possess a pentameric quaternary structure.  相似文献   

14.
Activating Mutations of the Serotonin 5-HT2C Receptor   总被引:1,自引:1,他引:0  
Abstract: Site-directed mutagenesis was performed to create a mutant serotonin 5-HT2C receptor that would mimic the active conformation of the native receptor. Structural alteration of receptor conformation was achieved by changing amino acid no. 312 from serine to phenylalanine (S312F) or lysine (S312K). After expression in COS-7 cells, the binding affinity of 5-HT for [3H]-mesulergine-labeled 5-HT2C receptors increased from 203 n M (native) to 76 n M for S312F and 6.6 n M for S312K mutant receptors. 5-HT potency for stimulation of phosphatidylinositol (PI) hydrolysis increased from 70 n M (native) to 28 n M for S312F and 2.7 n M for S312K mutant receptors. The mutant receptors were constitutively active, stimulating PI hydrolysis in the absence of agonist. S312F and S312K mutations resulted in twofold and five-fold increases, respectively, in basal levels of PI hydrolysis. Mianserin and mesulergine displayed inverse agonist activity by decreasing basal levels of PI hydrolysis stimulated by S312K mutant receptors. [3H]5-HT and [3H]-mesulergine labeled the same number of S312K mutant receptors and 5'-guanylylimidodiphosphate had no effect on [3H]5-HT binding. These results indicate that serine → lysine mutation at amino acid no. 312 produces an agonist high-affinity state of the 5-HT2C receptor that spontaneously couples to G proteins and stimulates PI hydrolysis in the absence of agonist.  相似文献   

15.
Incubated slices and freshly dissociated cells from 8-day-old rat cerebellum were used to try to identify the cells that participate in the large increases in cyclic GMP levels that follow activation of excitatory amino acid receptors in this tissue. In the slices, cyclic GMP responses to L-glutamate and related excitants were unaffected by tetrodotoxin and could be replicated by the guanylate cyclase activator nitroprusside. Nitroprusside and the receptor agonists appeared to activate the same pool of the enzyme. Prior destruction of neuroblasts, deep nuclei, or Golgi neurones did not cause loss of responses to L-glutamate. If granule cells were rendered necrotic, however, the cyclic GMP responses to all excitants tested were reduced by greater than or equal to 90%. Substantial losses of responses to veratridine and high K+ levels also occurred, but the nitroprusside-induced elevations were unaffected. In dissociated cell suspensions, the magnitude of responses to receptor agonists, but not those to nitroprusside, was markedly dependent on cell concentration. Responses to L-glutamate were the same in cell suspensions that were Purkinje cell depleted and Purkinje cell enriched. It is concluded that granule cells are primarily involved in the cyclic GMP responses to excitatory amino acids but that the cyclic GMP accumulations occur elsewhere, probably in glial cells.  相似文献   

16.
Abstract: In vivo microdialysis was used to examine the efflux of cyclic AMP (cAMP) into the extracellular fluid of the ventral hippocampus in the freely moving rat. The changes in extracellular cAMP concentration were monitored in response to forskolin and the serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The basal level of hippocampal extracellular cAMP was 2.3 ± 0.2 pmol/ml (n = 6), after a 3-h postsur- gery stabilisation period. Perfusion of forskolin (100 μM) through the probe for 30 min significantly increased the efflux of cAMP, which returned to baseline levels within 90 min. 8-OH-DPAT (0.3 mg/kg s.c.) also significantly increased cAMP efflux, whereas a similar volume of saline had no effect. Desensitisation of the 8-OH-DPAT-induced increase in cAMP efflux was observed following a second administration of 8-OH-DPAT after a 4-h interval. Administration of 8-OH-DPAT did not alter the efflux of cAMP when forskolin was perfused through the probe. Pretreatment with WAY 100135 [N-tert-butyl 3–4-(2-methoxyphenyl)piperazine-1 -yl-2-phenylpropanamide dihydrochloride] (5 mg/kg s.c.), a specific 5-HT1A receptor antagonist, prevented the 8-OH-DPAT-induced increase in cAMP efflux. The data indicate that the 8-OH-DPAT-induced increase in cAMP efflux in vivo is mediated by a 5-HT1A receptor.  相似文献   

17.
Abstract: A chronic (14-day) study was initiated to investigate the effects of combined fluoxetine (FLU) and desipramine (DMI) treatment on the densities and affinities of β-adrenergic and 5-hydroxytryptamine2 (5-HT2) receptors. Male Sprague-Dawley rats were administered the following doses using osmotic minipumps: FLU, 10 mg/kg/day; DMI, 5, 10, or 15 mg/kg/day; FLU, 10 mg/kg/day, plus DMI, 5 mg/kg/day; or vehicle (distilled water). After 14 days the cortex was dissected out and used for [3H]-ketanserin (5-HT2) binding, [3H]CGP-12177 (β-adrenergic) binding, and drug level analysis. All animals receiving DMI showed significant down-regulation of 5-HT2 receptors except those receiving FLU in combination. DMI down-regulated β-adrenergic receptors in a dose-dependent manner, with significantly greater down-regulation seen with the combination than with DMI (5 mg/kg/day) alone. This latter effect was apparently the result of greater levels of DMI in cortex with the combination than with DMI (5 mg/kg/day) alone. FLU had no effect on 5-HT2 or β-adrenergic receptors on its own. Coadministration of FLU and DMI resulted in a doubling of levels of FLU and its demethylated metabolite, norfluoxetine (NFLU), and a tripling of DMI levels compared with values observed when FLU (10 mg/kg/day) or DMI (5 mg/kg/day) was administered alone. These results suggest that with the DMI/FLU combination (a) FLU and/or NFLU block the down-regulation of 5-HT2 receptors caused by DMI alone, (b) an important factor determining β-adrenergic receptor density may be the elevated DMI levels relative to those with DMI (5 mg/kg/day) alone, (c) FLU and/or NFLU inhibit the metabolism of DMI, and (d) DMI inhibits the metabolism of FLU.  相似文献   

18.
Abstract: Molecular cloning of the rat and human 5-hydroxytryptamine1B (5-HT1B) receptors has revealed that the primary amino acid sequence of these two receptors is >90% identical. Despite this high degree of primary sequence homology, these two receptors have significantly different pharmacological properties. A mutant human 5-HT1B receptor was constructed in which Thr355 was replaced by Asn, the corresponding residue at this position in the rat 5-HT1B receptor. The pharmacology of the mutant human 5-HT1B receptor was very similar to that of the rat 5-HT1B receptor. Specifically, the mutant receptor had much higher affinity for pindolol, [125I]-iodocyanopindolol, propranolol, and CP-93,129 than the wild-type receptor. In contrast, the mutant had significantly lower affinity for sumatriptan, N,N -dipropyl-5-carboxamidotryptamine, 5-methoxy- N,N -dimethyltryptamine, methysergide, metergoline, and rauwolscine. These data suggest that a single amino acid difference at position 355 is responsible for the pharmacological differences between the rat and human 5-HT1B receptors.  相似文献   

19.
Abstract: The neuronal nitric oxide (NO) synthase generates NO from arginine. NO mediates its physiological effects mainly by stimulating the synthesis of cyclic GMP. We have investigated the role of the arginine availability on the NMDA-induced cyclic GMP accumulation in immature rat brain slices. The effect of NMDA was blocked by the inhibitor of the NO synthase, N G-nitro- l -arginine, and by the antagonist of ionotropic non-NMDA receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). This inhibition was not due to a direct interaction of CNQX with the NMDA receptor, and it was overcome by the presence of exogenously applied arginine. CNQX also blocked the NMDA-evoked release of [3H]arginine from cerebellar slices. Moreover, the arginine uptake inhibitor l -lysine reduced the cyclic GMP response to NMDA significantly. Therefore, the extracellular arginine availability, which is dependent on the activation of ionotropic non-NMDA receptors, determines the rate of the NO biosynthesis by the neuronal NO synthase. Together with the reported release of arginine from glial cells upon activation of glial ionotropic non-NMDA receptors and the predominant glial localization of arginine, these data provide the first evidence of an essential role of the arginine transfer from glial cells to neurons for the biosynthesis of NO.  相似文献   

20.
The synthesis of nitric oxide by brain slices has been demonstrated in several laboratories. In addition, in vitro studies have demonstrated stimulation of nitric oxide synthesis by excitatory amino acid receptor agonists. These data have led to the hypothesis that this readily diffusible "intercellular messenger molecule" acts to generate a cascade effect by activating guanylate cyclase in several cell types and thereby augment levels of the second messenger cyclic GMP (cGMP). Therefore, we evaluated this hypothesis in vivo, by testing the actions of the nitric oxide synthase inhibitor N-mono-methyl-L-arginine (NMMA) on elevations in level of mouse cerebellar cGMP generated by excitatory amino acid receptor agonists. The stimulatory effects of D-serine, quisqualate, and kainate were all found to be antagonized by this enzyme inhibitor. In addition, NMMA antagonized the increases in cerebellar cGMP level elicited by harmaline and pentylenetetrazole, pharmacological agents that augment endogenous excitatory amino acid transmission. Our data are, therefore, the first in vivo demonstration that nitric oxide is an important "messenger molecule" in the cerebellum, mediating the actions of kainate, quisqualate, and N-methyl-D-aspartate receptor agonists on guanylate cyclase. These data are consistent with previous in vitro findings with kainate and N-methyl-D-aspartate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号