首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

2.
A cyclic AMP dependent protein kinase (PKA), its regulatory (R) and catalytic (C) subunits were purified to homogeneity from soluble extract of Microsporum gypseum. Purified enzyme showed a final specific activity of 277.9 nmol phosphate transferred min(-1) mg protein(-1) with kemptide as substrate. The enzyme preparation showed two bands with molecular masses of 76 kDa and 45 kDa on sodium dodecyl polyacrylamide gel electrophoresis. The 76 kDa subunit was found to be the regulatory (R) subunit of PKA holoenzyme as determined by its immunoreactivity and the isoelectric point of this subunit was 3.98. The 45 kDa subunit was found to be the catalytic (C) subunit by its immunoreactivity and phosphotransferase activity. Gel filtration using Sepharose CL-6B revealed the molecular mass of PKA holoenzyme to be 240 kDa, compatible with its tetrameric structure, consisting of two regulatory subunits (76 kDa) and two catalytic subunits (45 kDa). The specificity of enzyme towards protein acceptors in decreasing order of phosphorylation was found to be kemptide, casein, syntide and histone IIs. Purified enzyme had apparent K(m) values of 71 microM and 25 microM for ATP and kemptide, respectively. Phosphorylation was strongly inhibited by mammalian PKA inhibitor (PKI) but not by inhibitors of other protein kinases. The PKA showed maximum activity at pH 7.0 and enzyme activity was inhibited in the presence of N-ethylmaleimide (NEM) which shows the involvement of sulfhydryl groups for the activity of PKA. PKA phosphorylated a number of endogenous proteins suggesting the multifunctional role of cAMP dependent protein kinase in M. gypseum. Further work is under progress to identify the natural substrates of this enzyme through which it may regulate the enzymes involved in phospholipid metabolism.  相似文献   

3.
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.  相似文献   

4.
Insulin-receptor tyrosine kinase can phosphorylate a variety of artificial substrates in vitro. Its physiological substrate(s), however, remains unknown. In the present study, we show that immobilized insulin receptors phosphorylate tyrosine residues of two cytosolic proteins of 50 kDa and 35 kDa in rat liver. Phosphorylation of these two proteins required Mn2+- or Mg2+-ATP as the phosphate donor. Phosphorylation was time- and temperature-dependent. Furthermore, the rate of phosphorylation of the two proteins was related to the autophosphorylated state of the insulin receptor. The pI of the phosphorylated 50 kDa and 35 kDa proteins was 5.4 and 5.6 respectively. These proteins were present in low abundance. They were not related to each other, nor to the insulin receptor, as demonstrated by in-gel proteolytic digestion and by immunoprecipitation using antibodies produced against them. They were specific substrates for the insulin receptor kinase, since they were not phosphorylated by epidermal-growth-factor-receptor kinase. These observations suggest that the 50 kDa and 35 kDa cytosolic proteins may be endogenous substrates for the insulin-receptor kinase.  相似文献   

5.
Sphingosine displays multiple biochemical and biological effects, in particular inhibition and activation of protein kinases. To determine the predominant interaction of sphingosine with cellular kinases, the effects of sphingosine on endogenous protein phosphorylation in Jurkat T lymphoblastic cells were investigated in vitro. Sphingosine was found to cause prominent phosphorylation of a number of cytosolic proteins ranging in molecular mass from 18 to 165 kDa. Phosphorylation was calcium-independent. Phosphorylation of substrates was increased in response to concentrations of sphingosine as low as 10 microM and peaked at concentrations of 20-200 microM. Multiple lines of evidence suggested that sphingosine activated more than one protein kinase: 1) the concentration dependence on sphingosine differed from substrate to substrate, 2) phosphorylation of one group of substrates required ATP as the phosphate donor, whereas a second group showed no preference between ATP and GTP, and 3) phosphorylation of some substrates was inhibited by heparin, whereas other substrates were resistant. Activation of these kinases demonstrated a very specific requirement for D-erythro-sphingoid bases. DL-erythro-dihydrosphingosine was partially active, whereas DL-threo-dihydrosphingosine was not. Other related molecules such as stearylamine, sphingomyelin, and C2-ceramide were not active. Sphingosine-activated kinase(s) were distinct from protein kinase C, cyclic nucleotide-activated kinases, and calcium-dependent kinases. These observations demonstrate the existence of multiple sphingosine-activated protein kinases with high specificity for D-erythro-sphingosine, suggesting physiologic regulation of protein phosphorylation by sphingosine.  相似文献   

6.
In vitro effects of sodium orthovanadate on protein kinase C induced phosphorylation of rat liver cytosolic and particulate proteins were examined. Vanadate enhanced the phosphorylation of six liver cytosolic proteins (Mr 170K, 150K, 80K, 34K, 25K and 19K daltons), the probable substrates for protein kinase C. There was a 2.5-fold increase in total endogenous protein phosphorylation at 2.0 mM concentration which was abolished in the presence of protein kinase C inhibitors such as 1-(5-isoquinolinyl-sulfonyl-2-methylpiperazine (H-7), N-[2-(methylamine)-ethyl]-5-isoquinolinesulfonamide (H-8) and polymyxin B. Metavanadate showed a similar stimulatory effect whereas vanadyl sulfate was inhibitory. These differential effects of vanadium salts were also observed with the particulate fraction. The results suggest that some of the effects of vanadate could be mediated through protein kinase C-induced phosphorylation of endogenous proteins.  相似文献   

7.
The toxicity of polycyclic aromatic hydrocarbons such as benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, and 3-methylcholanthrene has been associated with alterations in the proliferation of vascular smooth muscle cells and the development of lesions of mesenchymal origin. Because phosphorylation of endogenous substrates plays a central role in the regulation of smooth muscle cell growth, the present studies were conducted to evaluate the phosphorylation pattern of medial aortic protein upon repeated in vivo exposure of Japanese quail to benzo(a)pyrene (BaP). Medial aortic homogenates from quail treated for 10 weeks with 10 mg/kg benzo(a)pyrene or vehicle were processed for in vitro measurements of protein phosphorylation. In vitro phosphorylation of endogenous or exogenous proteins stimulated in vitro by phorbol myristate acetate/phosphatidyl-serine or cyclic AMP, known activators of protein kinase C and cyclic AMP-dependent protein kinase, respectively, was examined in the cytosolic and particulate fractions of homogenates from control and treated animals. Benzo(a)pyrene treatment significantly enhanced the basal phosphorylation of Mr 113, 35, and 23 kDa proteins in the cytosolic fraction. Modest increases in the phosphorylation of Mr 71, 52, and 38 kDa were also observed under basal conditions. No changes in the basal phosphorylation of particulate proteins were observed. Phosphorylation of endogenous protein substrates by protein kinase C in the cytosolic fraction was not altered by benzo(a)pyrene treatment. In contrast, inhibition of C-kinase-mediated phosphorylation of endogenous Mr 272, 72, and 45 kDa proteins was observed in the particulate fraction of aortic homogenates from benzo(a)pyrene-treated quail relative to controls. Exogenous histone phosphorylation by PKC in the particulate, but not cytosolic fraction, was decreased by benzo(a)pyrene treatment. The effects of benzo(a)pyrene on the C-kinase system were specific, since cAMP-mediated phosphorylation of endogenous proteins, as well as exogenous histone, was not altered by benzo(a)pyrene. Interestingly, benzo(a)pyrene treatment was associated with a selective increase of Mr 200, 80, and 67 kDa proteins in the cytosolic fraction. Collectively, these data are consistent with the hypothesis that medial protein phosphorylation is a significant molecular target of benzo(a)pyrene within the vascular wall.  相似文献   

8.
The protein substrate specificity of a calmodulin-dependent protein kinase activity from the cytosolic fraction of bovine heart was examined. Prior to the experiments, the kinase activity was purified more than 50-fold with a recovery of greater than 10% of the homogenate activity. Two endogenous protein substrates of molecular weight 57,000 and 73,000 were phosphorylated in these kinase preparations. The kinase preparation was also able to phosphorylate exogenous synapsin, phospholamban, glycogen synthase, MAP-2, myelin basic proteins and κ-casein, but not tubulin, pyruvate kinase, the regulatory subunit of cAMP protein kinase II, myosin light chain or phosphorylase b. High levels of calmodulin were required for activation of the kinase activity toward the 57,000 and 73,000 molecular weight endogenous substrates (K0.5 = 93 +/- 5 nM), glycogen synthase (K0.5 = 127 +/- 10 nM), and κ-casein (K0.5 = 321 +/- 107 nM). The kinase possessed a high affinity for glycogen synthase (half maximal activity at 0.9 +/- 0.4 μM) but a low affinity for κ-casein (21 +/- 2 μM). Sucrose density gradient centrifugation separated the calmodulin-dependent protein kinase activity into two fractions with apparent molecular weights of approximately 900,000 and 100,000. Both fractions phosphorylated the endogenous 57,000 molecular weight substrate and glycogen synthase similarly. These results indicate that cardiac calmodulin-dependent protein kinase previously observed to phosphorylate endogenous protein substrate possesses a wide range of substrate specificity.  相似文献   

9.
The occurrence of phospholipid-sensitive calcium-dependent protein kinase (referred to as C kinase) and its endogenous substrate proteins was examined in a membrane preparation from rat pancreatic zymogen granules. Using exogenous histone H1 as substrate, C kinase activity was found in the membrane fraction. The kinase was solubilized from membranes using Triton X-100 and partially purified using DEAE-cellulose chromatography. An endogenous membrane protein (Mr approximately equal to 18 000) was found to be specifically phosphorylated in the combined presence of Ca2+ and phosphatidylserine. Added diacylglycerol was effective in stimulating phosphorylation of exogenous histone by the partially purified C kinase, but had no effect upon phosphorylation of the endogenous 18 kDa protein by the membrane-associated C kinase. Phosphorylation of the 18 kDa protein was rapid (detectable within 30 s following exposure to Ca2+ and phosphatidylserine), and highly sensitive to Ca2+ (Ka = 4 microM in the presence of phosphatidylserine). These findings suggest a role for this Ca2+-dependent protein phosphorylation system in the regulation of pancreatic exocrine function.  相似文献   

10.
Protein phosphorylation was studied in crude and in protein kinase C (Pk-C)-enriched preparations from squamous cell carcinomas and normal mucosa of the human upper aero-digestive tract. In crude soluble preparations from neoplastic mucosa we found a 5-fold higher basal endogenous phosphorylation when compared to normal mucosa. In particulate fractions the increase was 3-fold. SDS-PAGE and autoradiography of phosphorylated proteins in crude soluble tumor extracts showed bands corresponding to proteins with apparent molecular weights of 18, 37, 40-42, 52, 60, 62 and 90 kDa. In normal mucosa the phosphorylation of these proteins was very low or absent, except for the proteins with molecular weights of 40-42 and 52-55 kDa. Addition of Ca2+ or Ca2+/phospholipids to the reaction mixture caused phosphorylation of additional proteins with apparent molecular weight of 45-50 kDa in soluble preparations of tumors. Cyclic AMP or cGMP had no significant effect on the phosphorylation of endogenous proteins. In the partially purified, Pk-C-enriched fractions the phosphorylation in the presence of Ca2+/phospholipids was distinctly higher in tumors when compared to the phosphorylation observed in normal mucosa, and some phosphorylation substrates were detected only in tumor tissue. In order to find out whether the elevated basal phosphorylation was due to an endogenous activation of protein kinases, different inhibitors of serine/threonine protein kinases were tested. These inhibitors included: heat-stable cyclic AMP-dependent protein kinase (Pk-A) inhibitor, Pk-A inhibitor peptide (Wiptide), heparin and the Pk-C inhibitors peptide 19-36 and H-7. None of these inhibitors had any significant effect on the basal phosphorylation. In conclusion, our results show the existence of endogenous phosphorylation substrates in human squamous cell carcinomas from the upper aerodigestive tract, and indicates that there is a significantly higher basal and Pk-C specific phosphorylation of endogenous substrates in tumors compared to normal mucosa. This may be of importance for the transformation and altered growth regulation in epithelial tumors.  相似文献   

11.
Thyroid protein kinase C (PKc) from cytosols of porcine and rat thyroid glands has been characterized using histone H1 or endogenous proteins as substrates. As in many other tissues histone H1 is by far the preferred exogenous substrate of thyroid PKc. Kinetic studies with H1 showed that, compared to rat thyroids, porcine glands are particularly rich in PKc, the predominant kinase activity in this tissue. The cAMP-dependent protein kinase (PKa) level, on the contrary, is very similar in both rat and porcine thyroids. Consequently, for the same type of tissue, there may be great species differences in the PKc level and the ratios between PKc and PKa kinase activities. Chromatographic properties of thyroid PKc are similar to those described in other tissues (one major peak followed by a small shoulder) except that elution of the main peak can vary depending on the nature of the salt gradient (approximately 55 mM for NaCl and 15 mM for sodium phosphate). In the first case PKc is completely separated from the PKa activity, in the second it is coeluted with the peak of PKa type I. The one-dimensional PAGE pattern of proteins phosphorylated by porcine PKc is very similar to the pattern obtained by rat enzyme. Protein bands of 18 kDa, 22-25 kDa and 32-36 kDa are specific substrates of the thyroid PKc, after in vitro phosphorylation of cytosol proteins. A great difference in Ca2+ requirement for PKc activation was noted, depending whether histone H1 or endogenous proteins were substrates. As in other tissues, calcium was absolutely necessary for phosphorylation of histone H1 by PKc. The addition of calcium was not absolutely necessary when endogenous proteins were the substrates, either for the activation of the enzyme or for phosphorylation of the PKc-specific substrates. Almost the same rate of phosphorylation was obtained with or without calcium in the incubation medium. However the one-dimensional PAGE pattern of phosphorylated proteins was different in the presence or absence of calcium. While addition of calcium was not absolutely necessary for the phosphorylation of a great number of proteins by the PKc, its presence was indispensable for the phosphorylation of certain endogenous substrates. However, calcium alone, in the absence of phospholipids had no effect on the phosphorylation of these proteins. Endogenous proteins, phosphorylated by the PKc only when calcium was present, were resolved by the two-dimensional PAGE into several distinct spots with molecular masses of 32-35 kDa and pI range of 5-7.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A protein kinase of 57 kDa, able to phosphorylate tyrosine in synthetic substrates pol(Glu4,Tyr1) and a fragment of Src tyrosine kinase, was isolated and partly purified from maize seedlings (Zea mays). The protein kinase was able to phosphorylate exogenous proteins: enolase, caseins, histones and myelin basic protein. Amino acid analysis of phosphorylated casein and enolase, as well as of phosphorylated endogenous proteins, showed that both Tyr and Ser residues were phosphorylated. Phosphotyrosine was also immunodetected in the 57 kDa protein fraction. In the protein fraction there are present 57 kDa protein kinase and enolase. This co-purification suggests that enolase can be an endogenous substrate of the kinase. The two proteins could be resolved by two-dimensional electrophoresis. Specific inhibitors of typical protein-tyrosine kinases had essentially no effect on the activity of the maize enzyme. Staurosporine, a nonspecific inhibitor of protein kinases, effectively inhibited the 57 kDa protein kinase. Also, poly L-lysine and heparin inhibited tyrosine phosphorylation by 57 kDa maize protein kinase. The substrate and inhibitor specificities of the 57 kDa maize protein kinase phosphorylating tyrosine indicate that it is a novel plant dual-specificity protein kinase.  相似文献   

13.
Effects of streptozotocin-induced diabetes and administration of the insulinmimetic agent, vanadate in rats on the liver protein kinase C-induced phosphorylation of exogenous C (Histone III-S) and endogenous substrates were investigated. Diabetes caused a significant fall (40-60%) in liver cytosolic protein C activity measured using both types of substrates. Vanadate treatment for a period of 5 weeks restored them to normal levels. Phosphorylation of cytosolic target proteins for protein kinase C followed a similar pattern in response to diabetes and vanadate. These treatments had no effect on particulate protein kinase C activity. Vanadate also had no effect in normal livers with respect to the protein kinase C system.  相似文献   

14.
Endogenous proteins which could serve as substrates for cyclic AMP-dependent protein kinase in vitro were measured in cytosolic fractions at four stages of development. A peak of cyclic AMP-dependent phosphorylation occurred at the slug stage, coincident with the appearance of cyclic AMP-dependent protein kinase. After partial purification of the slug-stage extracts by DE-52 cellulose and Sephacryl S-300 chromatography, cyclic AMP dependency of six proteins was observed. The apparent subunit molecular weights of the proteins were greater than 200,000, 110,000, 107,000, 91,000, 75,000 and 69,000. Upon further purification of the cyclic AMP-dependent protein kinase by chromatofocusing, the endogenous substrates were separated from the enzyme. In addition, the enzyme separated into catalytic and regulatory subunits. If the purified catalytic subunit was added to heated S300 fractions, proteins with apparent molecular weights of 91,000 and 107,000 were specificity phosphorylated. The results show the stage-dependent appearance of a cyclic AMP-dependent protein kinase and point out several in vitro substrates for the enzyme.  相似文献   

15.
Phosphorylation of neurofilament proteins by protein kinase C   总被引:9,自引:0,他引:9  
R K Sihag  A Y Jeng  R A Nixon 《FEBS letters》1988,233(1):181-185
The low molecular mass (70 kDa) subunit of neurofilaments (NF-L) contains at least three phosphorylation sites in vivo and is phosphorylated by multiple kinases in a site-specific manner [(1987) J. Neurochem. 48, S101; Sihag, R.K. and Nixon, R.A. submitted]. In this study, we observed that the three subunits of neurofilament proteins from retinal ganglion cell neurons are substrates for purified mouse brain protein kinase C. Two-dimensional alpha-chymotryptic phosphopeptide map analyses of the NF-L subunit demonstrated that protein kinase C phosphorylates four polypeptide sites, two of which incorporate phosphate when retinal ganglion cells are pulse-radiolabeled with [32P]orthophosphate in vivo.  相似文献   

16.
The subcellular distribution, kinetic properties, and endogenous substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) were examined in mouse kidney cortex. Protein kinase C associated with the particulate, mitochondrial, and brush border membrane fractions was assayed after solubilization in 0.2% Triton X-100 under conditions shown to be noninhibitory to catalytic activity. Of recovered activity, 52% was associated with the cytosolic fraction; mitochondrial and brush border membrane associated protein kinase C constituted 12 and 3%, respectively, of the activity recovered in the particulate fraction. Protein kinase C associated with brush border membranes exhibited a high affinity for ATP (apparent Km = 62 +/- 10 microM) and the highest apparent maximal velocity (1146 +/- 116 pmol P/(mg protein.min] of the renal fractions examined. Maximal stimulation of protein kinase C by diacylglycerol (in the presence of phosphatidylserine) was achieved at both 25 and 300 microM calcium in all renal fractions. These results are consistent with previous reports demonstrating that diacylglycerol increases the apparent affinity of protein kinase C for calcium. Phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol, was able to substitute for diacylglycerol and stimulate cytosolic and particulate renal protein kinase C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a specific inhibitor of protein kinase C, led to significant inhibition of catalytic activity in all renal subcellular fractions. Endogenous substrates for protein kinase C were demonstrated in renal cytosolic (26, 45, 63, and 105 kilodaltons (kDa], particulate (26, 33, 68, and 105 kDa), mitochondrial (43 kDa), and brush border membrane (26, 41, 52, 88, and 105 kDa) fractions. The possible physiological significance of protein kinase C in mammalian kidney is discussed.  相似文献   

17.
Although such solubility is uncommon among proteins generally, several bovine brain proteins were found to be soluble in 2.5% perchloric acid, and many of them were in vitro substrates for protein kinase C (Ca2+/phospholipid-dependent enzyme). Two of the perchloric acid-soluble brain proteins were purified, p43 and p17. P43 and p17 could be phosphorylated by protein kinase C only in the presence of Ca2+ and phospholipids and neither was a substrate for protein kinase II. P43 was subsequently identified as the neurospecific, calmodulin-binding protein, neuromodulin (also designated P-57, GAP43, B50, or F1) (Alexander, K. H., Wakim, B. T., Doyle, G. S., Walsh, K. A., and Storm, D. R. (1988) J. Biol. Chem. 263, 7544-7549). A rapid purification method for neuromodulin was developed taking advantage of its newly discovered property, solubility in 2.5% perchloric acid, and of its previously recognized calmodulin-binding property. Evidence was obtained that neuromodulin isolated from cytosolic extract exists as a mixture of molecular forms and that the Ca2+-binding S100 protein-beta discriminates among the different neuromodulin isoforms in forming covalent complexes via disulfide bridges; this discrimination may be explained by analogous differences observed between the NH2-terminal amino acid sequences of p57 and F1. Solubility in 2.5% perchloric acid was demonstrated for another rat brain protein kinase C substrate, p87. We suggest that perchloric acid solubility might be a common property of protein kinase C substrates.  相似文献   

18.
Inhibitory actions of 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine (H-7), N-[2-(methylamine)ethyl]-5-isoquinolinesulfonamide [H-8] and polymyxin B on the calcium-activated, phospholipid-dependent protein kinase (protein kinase C) of rat liver were compared. Using a partially purified liver protein kinase C and an exogenous substrate histone-III S, polymyxin B showed maximum inhibition (IC50, 9.5 microM) followed by H-7 (IC50, 25 microM) and H-8 (IC50, 36 microM). These inhibitors also inhibited protein kinase C-induced phosphorylation of endogenous cytosolic and particulate proteins in a dose-dependent manner though polymyxin B was relatively less effective with the particulate fraction. With the aid of protein kinase-C activators and these inhibitors, seven proteins in cytosolic (Mr 170K, 150K, 43K, 34K, 30K, 25K and 19K daltons) and six proteins in particulate (Mr 150K, 43K, 34K, 25K, 19K and 16K daltons) fractions were identified as probable substrates for protein kinase C in liver. The identity of these proteins remains to be determined.  相似文献   

19.
A calcium and phospholipid-dependent protein kinase (protein kinase C) was detected in the crude soluble extracts of A431 human epidermoid carcinoma cells. The enzyme required calcium, phosphatidylserine or phosphatidylinositol, and diacylglycerol (DG) for maximal activation. Protein kinase C phosphorylated both endogenous cytosolic proteins and various histones. Addition of epidermal growth factor (EGF) to A431 cultures resulted in a 2 to 3-fold stimulation of protein kinase activity. 12-0-tetradecanoylphorbol-13-acetate (TPA) in concert with EGF attenuated the EGF-induced enhanced phosphorylation of endogenous proteins. It is conceivable that DG, derived from phosphatidylinositol turnover, acts as a natural activator of protein kinase C activity.  相似文献   

20.
High-purified sarcolemma vesicles possessing endogenic protein kinase activity (EC 2.7.1.37) are isolated from the rabbit myocardium. Membrane-bound protein kinase catalyzed phosphorylation both of endogenic sarcolemma proteins and exogenic substrate--histones. Protein kinase was 1.4 times activated when affected by optimal concentration of 3' : 5'-AMP (10(-6) M). The value of seeming Km was 3.2 . 10(-6) M for ATP, and 0.66 mg/ml--for histone H1. In vesicles of sarcolemma endogenic protein kinase phosphorylated seven protein substrates with the molecular mass 220 000, 145 000, 110 000, 84 000, 43 000, 22 000 and 16 000. Exogenic soluble protein kinase produced the highest additional stimulation of phosphorylation for proteins with molecular mass 22 000 and 16 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号