首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
When mice under the age of 5 to 6 days are infected, the FrCas(E) retrovirus induces a neurodegenerative disease leading to death within 1 to 2 months. We have recently reported that transient treatment with a neutralizing monoclonal antibody (MAb) shortly after infection, in addition to an expected immediate decrease in the viral load, also favors the development of a strong protective immune response that persists long after the MAb has been cleared. This observation may have important therapeutic consequences, as it suggests that MAbs might be used, not only as direct neutralizing agents, but also as immunomodulatory agents enabling patients to mount their own antiviral immune responses. We have investigated whether immunoglobulins from mothers who displayed a strong anti-FrCas(E) humoral response induced upon MAb treatment could affect both viremia and the immune systems of FrCas(E)-infected pups till adult age upon placental and/or breastfeeding transfer. The strongest effects, i.e., reduction in the viral load and induction of protective humoral antiviral responses, were observed upon breastfeeding alone and breastfeeding plus placental immunity transfer. However, placental transfer of anti-FrCas(E) antibodies was sufficient to both protect neonatally infected animals and help them initiate a neutralizing anti-FrCas(E) response. Also, administration of a neutralizing MAb to naive mothers during late gestation and breastfeeding could generate similar effects. Taken together, our data support the concept that passive immunotherapies during late gestation and/or breastfeeding might help retrovirally infected neonates prime their own protective immune responses, in addition to exerting an immediate antiviral effect.  相似文献   

2.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

3.
Neutralizing monoclonal antibodies (MAbs) are increasingly being considered for blunting human viral infections. However, whether they can also exert indirect effects on endogenous antiviral immune responses has been essentially overlooked. We have recently shown that a short (several-day) period of immunotherapy with the neutralizing 667 MAb of mouse neonates shortly after infection with the lethal FrCasE retrovirus not only has an immediate effect on the viral load but also permits an endogenous antiviral immunity to emerge. Even though passive immunotherapy was administered during the particular period of immunocompetence acquisition, the endogenous response eventually arising was protective and persisted long (>1 year) after the MAb has disappeared. As very high levels of anti-FrCasE antibodies, predominantly of the immunoglobulin G2a (IgG2a) isotype and showing strong neutralization activity, were found in the sera of MAb-treated mice, it was necessary to address whether this humoral immunity was sufficient on its own to confer full protection against FrCasE or whether a cytotoxic T-lymphocyte (CTL) response was also necessary. Using a variety of in vivo assays in young and adult animals previously infected by FrCasE and treated by 667, we show here that transient 667 immunotherapy is associated with the emergence of a CTL response against virus-infected cells. This cytotoxic activity is indispensable for long-term antiviral protective immunity, as high neutralizing antibody titers, even enhanced in in vivo CD8+ cell depletion experiments, cannot prevent the FrCasE-induced death of infected/treated mice. Our work may have important therapeutic consequences, as it indicates that a short period of MAb-based immunotherapy conducted at a stage where the immune system is still developing can be associated with the mounting of a functional Th1-type immune response characterized by both CTL and IgG2a-type humoral contributions, the cooperation of which is known to be essential for the containment of chronic infections by a variety of viruses.  相似文献   

4.
Defensins are a group of small antimicrobial peptides playing an important role in innate host defense. In this study, a β-defensin cloned from liver of orange-spotted grouper, Epinephelus coioides, EcDefensin, showed a key role in inhibiting the infection and replication of two kinds of newly emerging marine fish viruses, an enveloped DNA virus of Singapore grouper iridovirus (SGIV), and a non-enveloped RNA virus of viral nervous necrosis virus (VNNV). The expression profiles of EcDefensin were significantly (P < 0.001) up-regulated after challenging with Lipopolysaccharide (LPS), SGIV and Polyriboinosinic Polyribocytidylic Acid (polyI:C) in vivo. Immunofluorescence staining observed its intracellular innate immune response to viral infection of SGIV and VNNV. EcDefensin was found to possess dual antiviral activity, inhibiting the infection and replication of SGIV and VNNV and inducting a type I interferon-related response in vitro. Synthetic peptide of EcDefensin (Ec-defensin) incubated with virus or cells before infection reduced the viral infectivity. Ec-defensin drastically decreased SGIV and VNNV titers, viral gene expression and structural protein accumulation. Grouper spleen cells over-expressing EcDefensin (GS/pcDNA-EcDefensin) support the inhibition of viral infection and the upregulation of the expression of host immune-related genes, such as antiviral protein Mx and pro-inflammatory cytokine IL-1β. EcDefensin activated type I IFN and Interferon-sensitive response element (ISRE) in vitro. Reporter genes of IFN-Luc and ISRE-Luc were significantly up-regulated in cells transfected with pcDNA-EcDefenisn after infection with SGIV and VNNV. These results suggest that EcDefensin is importantly involved in host immune responses to invasion of viral pathogens, and open the new avenues for design of antiviral agents in fisheries industry.  相似文献   

5.
Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.  相似文献   

6.
The brain parenchyma affords immune privilege to tissue grafts, but it is not known whether the same is true for intracerebral viral infections. Using stereotactically guided microinjection, we have confined infection with influenza virus A/NT/60/68 to either the brain parenchyma or the cerebrospinal fluid (CSF). A/NT/60/68 infection in the CSF elicited a comparable immune response to intranasal infection, with the production of antiviral serum antibody, priming of antiviral cytotoxic T-cell precursors, and an antiviral proliferative response in the draining lymph nodes. The response to virus in the CSF was detectable sooner after inoculation than the response to intranasal virus and also involved a prolonged production of virus-specific immunoglobulin A in the CSF. In contrast, there was no detectable immune response to virus infection in the brain parenchyma by any of the parameters measured for at least 10 days after inoculation. Over the next 80 days, 46% of the mice given parenchymal virus developed low-level immune responses that did not involve CSF antibody production, while the remaining 54% had no detectable response at any time. Thus, a virus infection confined to the parenchymal substance of the brain primed the immune system inefficiently or not at all.  相似文献   

7.
Proteins of the innate immune system can act as natural inhibitors of influenza virus, limiting growth and spread of the virus in the early stages of infection before the induction of adaptive immune responses. In this study, we identify the long pentraxin PTX3 as a potent innate inhibitor of influenza viruses both in vitro and in vivo. Human and murine PTX3 bound to influenza virus and mediated a range of antiviral activities, including inhibition of hemagglutination, neutralization of virus infectivity and inhibition of viral neuraminidase. Antiviral activity was associated with binding of the viral hemagglutinin glycoprotein to sialylated ligands present on PTX3. Using a mouse model we found PTX3 to be rapidly induced following influenza infection and that PTX3-/- mice were more susceptible than wild-type mice to infection by PTX3-sensitive virus strains. Therapeutic treatment of mice with human PTX3 promoted survival and reduced viral load in the lungs following infection with PTX3-sensitive, but not PTX3-resistant, influenza viruses. Together, these studies describe a novel antiviral role for PTX3 in early host defense against influenza infections both in vitro and in vivo and describe the therapeutic potential of PTX3 in ameliorating disease during influenza infection.  相似文献   

8.
9.
10.
Viral immune evasion strategies are important for establishment and maintenance of infections. Many viruses are in possession of mechanisms to counteract the antiviral response raised by the infected host. Here we show that a herpes simplex virus type 1 (HSV-1) mutant lacking functional viral protein 16 (VP16)-a tegument protein promoting viral gene expression-induced significantly higher levels of proinflammatory cytokines than wild-type HSV-1. This was observed in several cell lines and primary murine macrophages, as well as in peritoneal cells harvested from mice infected in vivo. The enhanced ability to stimulate cytokine expression in the absence of VP16 was not mediated directly by VP16 but was dependent on the viral immediate-early genes for infected cell protein 4 (ICP4) and ICP27, which are expressed in a VP16-dependent manner during primary HSV infection. The virus appeared to target cellular factors other than interferon-induced double-stranded RNA-activated protein kinase R (PKR), since the virus mutants remained stronger inducers of cytokines in cells stably expressing a dominant-negative mutant form of PKR. Finally, mRNA stability assay revealed a significantly longer half-life for interleukin-6 mRNA after infection with the VP16 mutant than after infection with the wild-type virus. Thus, HSV is able to suppress expression of proinflammatory cytokines by decreasing the stability of mRNAs, thereby potentially impeding the antiviral host response to infection.  相似文献   

11.
The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.  相似文献   

12.
Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-α/β) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-α/β production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.  相似文献   

13.
Effective recognition of viral infection and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs. Our previous study showed that a panel of microRNAs, including miR-155, was markedly upregulated in macrophages upon vesicular stomatitis virus infection; however, the biological function of miR-155 during viral infection remains unknown. In this paper, we show that RNA virus infection induces miR-155 expression in macrophages via TLR/MyD88-independent but retinoic acid-inducible gene I/JNK/NF-κB-dependent pathway. And the inducible miR-155 feedback promotes type I IFN signaling, thus suppressing viral replication. Furthermore, suppressor of cytokine signaling 1 (SOCS1), a canonical negative regulator of type I IFN signaling, is targeted by miR-155 in macrophages, and SOCS1 knockdown mediates the enhancing effect of miR-155 on type I IFN-mediated antiviral response. Therefore, we demonstrate that inducible miR-155 feedback positively regulates host antiviral innate immune response by promoting type I IFN signaling via targeting SOCS1.  相似文献   

14.
Monoclonal antibodies (MAb) reactive with the glycoprotein of vesicular stomatitis virus (VSV) serotypes Indiana (VSV-Ind) and New Jersey (VSV-NJ) were used to protect mice against lethal infection. MAb which reacted with a number of distinct epitopes and which could neutralize the virus in vitro could also protect against infection in vivo. MAb which could not neutralize the virus in vitro but which were specific for the glycoprotein of a single serotype were also able to protect mice against lethal VSV challenge. Interestingly, a group of MAb which cross-reacted with the glycoproteins of VSV-Ind and VSV-NJ could passively protect against challenge with either serotype. It was shown that as early as 2 h after infection, neither neutralizing nor nonneutralizing MAb could protect. Nonneutralizing MAb were found to be less effective at in vivo protection than neutralizing MAb. Furthermore, nonneutralizing MAb demonstrated a much lower binding efficiency to intact virions than did neutralizing MAb. These observations, plus the fact that the nonneutralizing MAb could lyse virus-infected cells in the presence of complement, suggested that in vivo protection by these antibodies may involve cell-associated viral determinants. To compare the mechanisms by which neutralizing and nonneutralizing MAb protected in vivo, F(ab')2 fragments were used in protection experiments. Although the F(ab')2 of a neutralizing MAb was still able to protect animals lethal virus challenge, the F(ab')2 of a cross-reactive nonneutralizing MAb was unable to do so. The reactivity of nonneutralizing MAb with virions and the apparent necessity of an intact Fc portion for protection further distinguish these antibodies from those MAb that are able to neutralize VSV solely by binding to the glycoprotein.  相似文献   

15.
Sakuma R  Mael AA  Ikeda Y 《Journal of virology》2007,81(18):10201-10206
Dominant, constitutively expressed antiretroviral factors, including TRIM5alpha and APOBEC3 proteins, are distinguished from the conventional innate immune systems and are classified as intrinsic immunity factors. Here, we demonstrate that interferon alpha (IFN-alpha) treatment upregulates TRIM5alpha mRNA in rhesus monkey cells, which correlates with the enhanced TRIM5alpha-mediated pre- and postintegration blocks of human immunodeficiency virus replication. In human cells, IFN-alpha increases the levels of TRIM5alpha mRNA, resulting in enhanced antiviral activity against N-tropic murine leukemia virus infection. These observations indicate that the TRIM5alpha-mediated antiviral effects can be orchestrated by the conventional innate immune response. It is conceivable that TRIM5alpha plays an essential role in controlling both the initial retroviral exposure and the subsequent viral dissemination in vivo.  相似文献   

16.
Effects of type I interferons on Friend retrovirus infection   总被引:1,自引:0,他引:1  
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection.  相似文献   

17.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.  相似文献   

18.
Australian abalone production has been affected by outbreaks of abalone viral ganglioneuritis (AVG) caused by a herpesvirus (AbHV). In this study, we undertook experimental transmission trials by immersion to study the abalone immune response to infection with AbHV. Representative cellular and humoural immune parameters of abalone, including total haemocyte count (THC), superoxide anion (SO) and antiviral activity against herpes simplex virus type 1 (HSV-1), were examined in apparently healthy (sub-clinical) and moribund abalone after challenge. In the early infection, sub-clinical stage (days 1–3), THC was found to increase significantly in infected abalone. TaqMan qPCR confirmed 20.5% higher viral load in moribund abalone compared to apparently healthy abalone, indicating that the abundance of AbHV within abalone is linked to their clinical signs. At the clinical stage of infection, THC was significantly lower in moribund abalone, but increased in AbHV-exposed but apparently healthy abalone, in comparison to non-infected controls. SO was reduced in all abalone that were PCR-positive for AbHV. THC and SO level were found to be negatively correlated with the presence of AbHV in abalone, but no effect of AbVH exposure was observed on the haemolymph antiviral activity. These results suggest that abalone mount an initial cellular immune response to AbHV infection, but this response cannot be sustained under high viral loads, leading to mortality.  相似文献   

19.
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.  相似文献   

20.
Immunoglobulin A (IgA) monoclonal antibodies (MAbs) directed at the conserved inner core protein VP6 of rotavirus, such as the IgA7D9 MAb, provide protective immunity in adult and suckling mice when delivered systemically. While these antibodies do not have traditional in vitro neutralizing activity, they could mediate their antiviral activity either by interfering with the viral replication cycle along the IgA secretory pathway or by acting at mucosal surfaces as secretory IgA and excluding virus from target enterocytes. We sought to determine the critical step at which antirotaviral activity was initiated by the IgA7D9 MAb. The IgA7D9 MAb appeared to directly interact with purified triple-layer viral particles, as shown by immunoprecipitation and immunoblotting. However, protection was not conferred by passively feeding mice with the secretory IgA7D9 MAb. This indicates that the secretory IgA7D9 MAb does not confer protection by supplying immune exclusion activity in vivo. We next evaluated the capacity of polymeric IgA7D9 MAb to neutralize rotavirus intracellularly during transcytosis. We found that when polymeric IgA7D9 MAb was applied to the basolateral pole of polarized Caco-2 intestinal cells, it significantly reduced viral replication and prevented the loss of barrier function induced by apical exposure of the cell monolayer to rotavirus, supporting the conclusion that the antibody carries out its antiviral activity intracellularly. These findings identify a mechanism whereby the well-conserved immunodominant VP6 protein can function as a target for heterotypic antibodies and protective immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号