首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.  相似文献   

2.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

3.
Transmissible spongiform encephalopathies (TSEs) such as scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jacob disease (CJD) and Gerstmann-Str?ussler-Scheinker syndrome (GSS) in humans, are caused by an infectious agent designated prion. The "protein only" hypothesis states that the prion consists partly or entirely of a conformational isoform of the normal host protein PrPc and that the abnormal conformer, when introduced into the organism, causes the conversion of PrPc into a likeness of itself. Since the proposal of the "protein only" hypothesis more than three decades ago, cloning of the PrP gene, studies on PrP knockout mice and on mice transgenic for mutant PrP genes allowed deep insights into prion biology. Reverse genetics on PrP knockout mice containing modified PrP transgenes was used to address a variety of problems: mapping PrP regions required for prion replication, studying PrP mutations affecting the species barrier, modeling familial forms of human prion disease, analysing the cell specificity of prion propagation and investigating the physiological role of PrP by structure-function studies. Many questions regarding the role of PrP in susceptibility to prions have been elucidated, however the physiological role of PrP and the pathological mechanisms of neurodegeneration in prion diseases are still elusive.  相似文献   

4.
PrP(Sc), the only identified component of the scrapie prion, is a conformational isoform of PrPc. The physiological role of PrPc, a glycolipid-anchored glycoprotein, is still unknown. We have shown previously that neuronal nitric oxide synthase (nNOS) activity is impaired in the brains of mice sick with experimental scrapie as well as in scrapie-infected neuroblastoma cells. In this work we investigated the cell localization of nNOS in brains of wild-type and scrapie-infected mice as well as in mice in which the PrP gene was ablated. We now report that whereas in wild-type mice, nNOS, like PrPc, is associated with detergent-insoluble cholesterol-rich membranous microdomains (rafts), this is not the case in brains of scrapie-infected or in those of adult PrP(0/0) mice. Also, adult PrP(0/0), like scrapie-infected mice, show reduced nNOS activity. We suggest that PrPc may play a role in the targeting of nNOS to its proper subcellular localization. The similarities of nNOS properties in PrP(0/0) as compared with scrapie-infected mice suggest that at least this role of PrPc may be impaired in scrapie-infected brains.  相似文献   

5.
Yang W  Yang H  Tien P 《FEBS letters》2006,580(17):4231-4235
Self-propagation is characteristic property for a prion conformation. Previous studies revealed that prion protein expressed in the cytoplasm gained a PrP(Sc)-like conformation. However, it remains unclear whether the PrP(Sc)-like conformation has the self-propagating property. We found that PrP partially purified from yeast cytoplasm formed amyloid fiber like structures, and we found that the PrP(Sc)-like conformation is able to convert normal PrP(C) in the brain homogenate to a proteinase K-resistant conformation. These results suggest that yeast cytoplasm expressed recombinant PrP(Sc)-like conformation has the characteristic self-propagating property of a prion, which may have implications in the pathogenesis of sporadic and inherited prion diseases.  相似文献   

6.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

7.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

8.
Engineering the prion protein using chemical synthesis.   总被引:2,自引:0,他引:2  
In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such biologically relevant forms of PrP by the introduction of point mutations or groups that mimic post-translational modifications should enhance our understanding of the processes that cause prion diseases and may lead to the chemical synthesis of an infectious agent.  相似文献   

9.
The glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPc) has a fundamental role in prion diseases. Intracellular trafficking of PrPc is important in the generation of protease resistant PrP species but little is known of how endocytosis affects PrPc function. Here, we discuss recent experiments that have illuminated how PrPc is internalized and what are the possible destinations taken by the protein. Contrary to what would be expected for a GPI-anchored protein there is increasing evidence that clathrin-mediated endocytosis and classical endocytic organelles participate in PrPc trafficking. Moreover, the N-terminal domain of PrPc may be involved in sorting events that can direct the protein during its intracellular journey. Indeed, the concept that the GPI-anchor determines PrPc trafficking has been challenged. Cellular signaling can be triggered or be regulated by PrPc and we suggest that endocytosis of PrPc may influence signaling in several ways. Definition of the processes that participate in PrPc endocytosis and intracellular trafficking can have a major impact on our understanding of the mechanisms involved in PrPc function and conversion to protease resistant conformations.  相似文献   

10.
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.  相似文献   

11.
A key molecular event in prion diseases is the conversion of PrP (prion protein) from its normal cellular form (PrP(c)) into the disease-specific form (PrP(Sc)). The transition from PrP(c) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here, we review several lines of evidence implicating membranes in the conversion of PrP, and summarize recent results from our own work on the role of lipid membranes in conformational transitions of prion proteins. By establishing new correlations between in vivo biological findings with in vitro biophysical results, we propose a role for lipid rafts in prion conversion, which takes into account the structural heterogeneity of PrP in different lipid environments.  相似文献   

12.
Prion diseases are characterised by severe neural lesions linked to the presence of an abnormal protease-resistant isoform of cellular prion protein (PrPc). The peptide PrP(106-126) is widely used as a model of neurotoxicity in prion diseases. Here, we examine in detail the intracellular signalling cascades induced by PrP(106-126) in cortical neurons and the participation of PrPc. We show that PrP(106-126) induces the activation of subsets of intracellular kinases (e.g., ERK1/2), early growth response 1 synthesis and induces caspase-3 activity, all of which are mediated by nicotinamide adenine dinucleotide phosphate hydrogen-oxidase activity and oxidative stress. However, cells lacking PrPc are similarly affected after peptide exposure, and this questions the involvement of PrPc in these effects.  相似文献   

13.
The role of rafts in the fibrillization and aggregation of prions   总被引:4,自引:0,他引:4  
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrP(C)) to the disease-specific form (PrP(Sc)). The transition from PrP(C) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here several lines of evidence implicating membranes in the conversion of PrP are reviewed with a particular emphasis on the role of lipid rafts in the conformational transition of prion proteins. New correlations between in vitro biophysical studies and findings from cell biology work on the role of rafts in prion conversion are highlighted and a mechanism for the role of rafts in prion conversion is proposed.  相似文献   

14.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).  相似文献   

15.
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties.  相似文献   

16.
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.  相似文献   

17.
Conversion of the cellular alpha-helical prion protein (PrP(C)) into a disease-associated isoform (PrP(Sc)) is central to the pathogenesis of prion diseases. Molecules targeting either normal or disease-associated isoforms may be of therapeutic interest, and the antibodies binding PrP(C) have been shown to inhibit prion accumulation in vitro. Here we investigate whether antibodies that additionally target disease-associated isoforms such as PrP(Sc) inhibit prion replication in ovine PrP-inducible scrapie-infected Rov cells. We conclude from these experiments that antibodies exclusively binding PrP(C) were relatively inefficient inhibitors of ScRov cell PrP(Sc) accumulation compared with antibodies that additionally targeted disease-associated PrP isoforms. Although the mechanism by which these monoclonal antibodies inhibit prion replication is unclear, some of the data suggest that antibodies might actively increase PrP(Sc) turnover. Thus antibodies that bind to both normal and disease-associated isoforms represent very promising anti-prion agents.  相似文献   

18.
According to the protein-only hypothesis of prion propagation, prions are composed principally of PrP(Sc), an abnormal conformational isoform of the prion protein, which, like its normal cellular precursor (PrP(C)), has a GPI (glycosylphosphatidylinositol) anchor at the C-terminus. To date, elucidating the role of this anchor on the infectivity of prion preparations has not been possible because of the resistance of PrP(Sc) to the activity of PI-PLC (phosphoinositide-specific phospholipase C), an enzyme which removes the GPI moiety from PrP(C). Removal of the GPI anchor from PrP(Sc) requires denaturation before treatment with PI-PLC, a process that also abolishes infectivity. To circumvent this problem, we have removed the GPI anchor from PrP(Sc) in RML (Rocky Mountain Laboratory)-prion-infected murine brain homogenate using the aspartic endoprotease cathepsin D. This enzyme eliminates a short sequence at the C-terminal end of PrP to which the GPI anchor is attached. We found that this modification has no effect (i) on an in vitro amplification model of PrP(Sc), (ii) on the prion titre as determined by a highly sensitive N2a-cell based bioassay, or (iii) in a mouse bioassay. These results show that the GPI anchor has little or no role in either the propagation of PrP(Sc) or on prion infectivity.  相似文献   

19.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

20.
Prion diseases are fatal and transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)) denoted PrP(Sc). To identify intracellular organelles involved in PrP(Sc) formation, we studied the role of the Ras-related GTP-binding proteins Rab4 and Rab6a in intracellular trafficking of the prion protein and production of PrP(Sc). When a dominant-negative Rab4 mutant or a constitutively active GTP-bound Rab6a protein was overexpressed in prion-infected neuroblastoma N2a cells, there was a marked increase of PrP(Sc) formation. By immunofluorescence and cell fractionation studies, we have shown that expression of Rab6a-GTP delocalizes PrP within intracellular compartments, leading to an accumulation in the endoplasmic reticulum. These results suggest that prion protein can be subjected to retrograde transport toward the endoplasmic reticulum and that this compartment may play a significant role in PrP(Sc) conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号