首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-five novel substituted imidazolyl methylene biphenyls have been synthesized as CYP17 inhibitors for the potential treatment of prostate cancer. Their activities have been tested with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against CYP11B1, CYP11B2, and hepatic CYP enzymes 3A4, 1A2, 2B6 and 2D6. The core rigidified compounds (30-35) were the most active ones, being much more potent than Ketoconazole and reaching the activity of Abiraterone. However, they were not very selective. Another rather potent and more selective inhibitor (compound 23, IC(50)=345 nM) was further examined in rats regarding plasma testosterone levels and pharmacokinetic properties. Compared to the reference Abiraterone, 23 was more active in vivo, showed a longer plasma half-life (10h) and a higher bioavailability. Using our CYP17 homology protein model, docking studies with selected compounds were performed to study possible interactions between inhibitors and amino acid residues of the active site.  相似文献   

2.
Two novel classes of non-steroidal substrate mimetics were synthesised and examined for their potency as inhibitors of human CYP17. Selected compounds were tested for inhibition of hepatic CYP enzymes 3A4, 1A2, 2C9 and 2C19. The most promising compound 15 showed a good inhibition of the target enzyme (31% and 66% at 0.2 and 2 microM, respectively), and little inhibition of the most important hepatic enzyme CYP3A4 (6% and 19% inhibition at 0.2 and 2 microM, respectively) and the key enzyme of glucocorticoid biosynthesis CYP11B1 (3% and 23% inhibition at 0.2 and 2 microM, respectively). Docking studies revealed that this compound does not assume the same binding mode as steroidal ligands.  相似文献   

3.
A series of 2,1,3- and 1,2,4-benzothiadiazine derivatives (BTDs) were synthesized and evaluated for their inhibitory activity versus enzymatic isoforms PDE3, PDE4 and PDE7. The compounds characterized by the 3,5-di-tert-butyl-4-hydroxybenzyl moiety at N1 position of 2,1,3-benzothiadiazine core (8, 13, 18), were found active and selective at micromolar level versus PDE4 and could be studied as new leads for the treatment of asthma and COPD (Chronic Obstructive Pulmonary Disease). The antioxidant activity evaluation on the same compounds highlighted 13 as the most significative. Molecular modelling studies gave further support to biological results and suggested targeted modifications so as to improve their potency.  相似文献   

4.
We report the synthesis and biological evaluation of a new series of 3- or 4-(substituted)phenylisoxazolones as HNE inhibitors. Due to tautomerism of the isoxazolone nucleus, two isomers were obtained as final compounds (2-NCO and 5-OCO) and the 2-NCO derivatives were the most potent with IC50 values in the nanomolar range (20–70?nM). Kinetic experiments indicated that 2-NCO 7d and 5-OCO 8d are both competitive HNE inhibitors. Molecular modelling on 7d and 8d suggests for the latter a more crowded region about the site of the nucleophilic attack, which could explain its lowered activity. In addition molecular dynamics (MD) simulations showed that the isomer 8d appears more prone to form H-bond interactions which, however, keep the reactive sites quite distant for the attack by Ser195. By contrast the amide 7d appears more mobile within the active pocket, since it makes single H-bond interactions affording a favourable orientation for the nucleophilic attack.  相似文献   

5.
The enzyme 17alpha-hydroxylase/17,20-lyase (P-450(17alpha) has recently become the focus of research into the fight against hormone dependent prostate cancer. However, the specific nature of this enzyme, in particular, the dual role of its active site, remains unknown. In our drive to elucidate further information regarding P-450(17alpha), and in light of our experience of other cytochrome P-450 enzymes, we chose to consider each part of this complex enzyme separately (i.e. the 17alpha-hydroxylase (17alpha-OHase) and the 17,20-lyase components). We therefore initiated a series of molecular modelling studies involving the construction of a 'substrate heme complex' for each of the two components. Here, we consider the construction and use of the complex for the 17alpha-OHase component of this enzyme. Using this approach, we have successfully considered: the binding of steroidal and non-steroidal reversible inhibitors: the structural features necessary for potent inhibition: and, rationalised the mode of action of a number of compounds whose inhibitory activity has not been previously explained, for example aminoglutethimide (an inhibitor of another related cytochrome P-450 enzyme, aromatase AR). The study concludes that the ability of the inhibitors of 17alpha-OHase to undergo polar polar interaction with the active site and for the compounds to closely mimic the substrate plane is a major factor in determining potency. Factors such as log P (log of the partition coefficient value for the distribution of a compound between octanol and water) would then appear to determine the extent of overall inhibitory activity. Overall, the study suggests that the novel substrate-heme complex approach has provided a good approximation of the 17alpha-OHase active site and has proved to be a useful tool in drug design and discovery.  相似文献   

6.
A series of novel 4-anilinoquinazoline derivatives (3a3j) has been synthesized and evaluated as potential inhibitors for protein kinases implicated in Alzheimer’s disease. Among all the synthesized compounds, compound 3e (N-(3,4-dimethoxyphenyl)-6,7-dimethoxyquinazolin-4-amine) exhibited the most potent inhibitory activity against CLK1 and GSK-3α/β kinase with IC50 values of 1.5 μM and 3 μM, respectively. Docking studies were performed to elucidate the binding mode of the compounds to the active site of CLK1 and GSK-3β. The results of our study suggest that compound 3e may serve as a valuable template for the design and development of dual inhibitors of CLK1 and GSK-3α/β enzymes with potential therapeutic application in Alzheimer’s disease.  相似文献   

7.
A series of 1- and 4-(2-naphthylmethyl)-1H-imidazoles (3 and 4) has been synthesized and evaluated as C(17,20)-lyase inhibitors. Several 6-methoxynaphthyl derivatives showed potent C(17,20)-lyase inhibition, suppression of testosterone biosynthesis in rats and reduction in the weight of prostate and seminal vesicles in rats, whereas most of these compounds increased the liver weight after consecutive administrations. The effect on the liver weight was removed by incorporation of a hydroxy group and an isopropyl group at the methylene bridge, as seen in (S)-28d and (S)-42. Selectivity for C(17,20)-lyase over 11beta-hydroxylase is also discussed, and (S)-42 was found to be a more than 260-fold selective inhibitor. Furthermore, (S)-42 showed a potent suppression of testosterone biosynthesis after a single oral administration in monkeys. These data suggest that (S)-42 may be a promising agent for the treatment of androgen-dependent prostate cancer.  相似文献   

8.
The inhibition of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represents a promising strategy to combat infections caused by multidrug-resistant Gram-negative bacteria. In order to elucidate the functional groups being important for the inhibition of LpxC, the structure of our previously reported hydroxamic acid 4 should be systematically varied. Therefore, a series of benzyloxyacetohydroxamic acids was prepared, of which the diphenylacetylene derivatives 28 (Ki = 95 nM) and 21 (Ki = 66 nM) were the most potent inhibitors of Escherichia coli LpxC. These compounds could be synthesized in a stereoselective manner employing a Sharpless asymmetric dihydroxylation and a Sonogashira coupling in the key steps. The obtained structure–activity relationships could be rationalized by molecular docking studies.  相似文献   

9.
A series of novel diaryl substituted pyrazolyl 2,4-thiazolidinediones were synthesized via reaction of appropriate pyrazolecarboxaldehydes with 2,4-thiazolidinedione (TZD) and nitrobenzyl substituted 2,4-thiazolidinedione. The resulting compounds were screened in vitro for pancreatic lipase (PL) inhibitory activity. Two assay protocols were performed viz., methods A and B using p-nitrophenyl butyrate and tributyrin as substrates, respectively. Compound 11e exhibited potent PL inhibitory activity (IC50 = 4.81 µM and Xi50 = 10.01, respectively in method A and B), comparable to that of the standard drug, orlistat (IC50 = 0.99 µM and Xi50 = 3.72). Presence of nitrobenzyl group at N-3 position of TZD and nature of substituent at para position of phenyl ring at C-3 position of pyrazole ring notably affected the PL inhibitory activity of the tested compounds. Enzyme inhibition kinetics of 11e revealed its reversible competitive inhibition, similar to that of orlistat. Molecular docking studies validated the rationale of pharmacophoric design and are in accordance to the in vitro results. Compound 11e exhibited a potential MolDock score of ?153.349 kcal/mol. Further, the diaryl pyrazolyl wing exhibited hydrophobic interactions with the amino acids of the hydrophobic lid domain. Moreover, the carbonyl group at 2nd position of the TZD ring existed adjacent to Ser 152 (≈3 Å) similar to that of orlistat. A 10 ns molecular dynamics simulation of 11ePL complex revealed a stable binding conformation of 11e in the active site of PL (Maximum RMSD  3 Å). The present study identified novel thiazolidinedione based leads with promising PL inhibitory activity. Further development of the leads might result in potent PL inhibitors.  相似文献   

10.
The synthesis of a new series of P450 17 inhibitors is described. The imidazol-1-yl compounds 5 showed strong inhibition of P450 17 rat and especially human enzyme, the most active compounds being 5ax, 5ay and 5bx with IC50 values of 0.17, 0.24 and 0.25 microM, respectively (ketoconazole: 0.74 microM). The 1,2,4-triazol-1-yl compounds 6 were less active, while the 1,2,4-triazol-4-yl compounds 7 were inactive. The title compounds showed little inhibition of P450 arom. The most active P450 17 inhibitors 5ax and 5ay markedly decreased the testosterone plasma concentration of SD rats 2 h after application of 0.019 mmol/kg. After 6 h, 5ay still exhibited a strong effect.  相似文献   

11.
The cytochrome P-450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. Here, we report the synthesis and biochemical evaluation of a range of benzyl imidazole-based compounds which have been targeted against the two components of this enzyme, that is, 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results from the biochemical testing suggest that the compounds synthesised are good inhibitors, with N-4-iodobenzyl imidazole (5) (IC50=10.06 microM against 17alpha-OHase and IC50=1.58 microM against lyase) showing equipotent activity against lyase compared to the standard compound, ketoconazole (KTZ) (IC50=3.76+/-0.01 microM against 17alpha-OHase and IC50=1.66+/-0.15 microM against lyase). Furthermore, the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha).  相似文献   

12.
During the alkaline methanolysis of 3beta-acetoxy-21-chloropregn-5-ene-20beta-N-phenylurethane (4a), and its 4-monosubstituted (4b-e) and 3,5-disubstituted (4f) phenyl derivatives, cyclization occurs, in the course of which 17beta-[3-(N-phenyl)-2-oxazolidon-5-yl]androst-5-en-3beta-ol (5a) and its substituted phenyl derivatives (5b-f) are formed. The cyclization takes place with (N(-)-5) neighboring group participation. The reaction of 3beta-acetoxy-21-azidopregn-5-en-20beta-ol (3d) with triphenylphosphine gave 3beta-acetoxy-21-phosphiniminopregn-5-en-20beta-ol, which reacted in situ with carbon dioxide with the participation of the sterically favored 20beta-OH to give the unsubstituted steroidal cyclic carbamate (8). Oppenauer oxidation of the 3beta-hydroxy-exo-heterocyclic steroids (5a-f, 9) yielded the corresponding Delta(4)-3-ketosteroids (7a-f, 10). The inhibitory effects (IC(50)) of these compounds on rat testicular C(17,20)-lyase were investigated with an in vitro radioligand incubation technique. The N-unsubstituted 17beta-(2-oxazolidon-5-yl)-androst-4-en-3-one derivative (10) was found to be a potent inhibitor (IC(50)=3.0 microM).  相似文献   

13.
A series of N-heterocyclic dipeptide aldehydes 4-13 have been synthesised and evaluated as inhibitors of ovine calpain 1 (o-CAPN1) and ovine calpain 2 (o-CAPN2). 5-Formyl-pyrrole 9 (IC(50) values of 290 and 25nM against o-CAPN1 and o-CAPN2, respectively) was the most potent and selective o-CAPN2 inhibitor, displaying >11-fold selectivity. The amino acid sequences of o-CAPN1 and o-CAPN2 have been determined. Because of the lack of available structural information on the ovine calpains, in silico homology models of the active site cleft of o-CAPN1 and o-CAPN2 were developed based on human calpain 1 (h-CAPN1) X-ray crystal structure (PDB code 1ZCM). These models were used to rationalise the observed SAR for compounds 4-13 and the selectivity observed for 9. The o-CAPN2 selective inhibitor 9 (CAT0059) was assayed in an in vitro ovine lens culture system and shown to successfully protect the lens from calcium-induced opacification.  相似文献   

14.
A series of novel 1H- and 2H-indazole derivatives of the commercially available dehydroepiandrosterone acetate have been synthesized and tested for inhibition of human cytochrome 17alpha-hydroxylase-C(17,20)-lyase (CYP17), androgen receptor (AR) binding affinity, and cytotoxic potential against three prostate cancer (PC) cell lines.  相似文献   

15.
A series of N-substituted-3-[(2'-hydroxy-4'-prenyloxy)-phenyl]-5-phenyl-4,5-dihydro-(1H)-pyrazolines were synthesized and tested on human monoamine oxidase-A and -B isoforms. Structure-activity relationships and molecular modelling showed that some substitutions, such as benzyloxy or chlorine atom, improve the best interaction with active site of hMAO-B.  相似文献   

16.
The oxoeicosanoid receptor 1 (OXER1) is a member of the G-protein coupled receptors (GPCR) family, and is involved in inflammatory processes and oncogenesis. As such it is an attractive target for pharmacological intervention. The present study aimed to shed light on the molecular fundaments of OXER1 modulation using chemical probes structurally related to the natural agonist 5-oxo-ETE. In a first step, 5-oxo-ETE and its closely related derivatives (5-oxo-EPE and 4-oxo-DHA) were obtained by conducting concise and high-yielding syntheses. The biological activity of obtained compounds was assessed in terms of potency (EC50) and efficacy (Emax) for arrestin recruitment. Finally, molecular modelling and simulation were used to explore binding characteristics of 5-oxo-ETE and derivatives with the aim to rationalize biological activity. Our data suggest that the tested 5-oxo-ETE derivatives (i) insert quickly into the membrane, (ii) access the receptor via transmembrane helices (TMs) 5 and 6 from the membrane side and (iii) drive potency and efficacy by differential interaction with TM5 and 7. Most importantly, we found that the methyl ester of 5-oxo-ETE (1a) showed even a higher maximum response than the natural agonist (1). In contrast, shifting the 5-oxo group into position 4 results in inactive compounds (4-oxo DHA compounds (3) and (3a)). All in all, our study provides relevant structural data that help understanding better OXER1 functionality and its modulation. The structural information presented herein will be useful for designing new lead compounds with desired signalling profiles.  相似文献   

17.
We have previously reported 7-bromo-2-(2-chrolophenyl)-imidazoquinolin-4(5H)-one (1) as a novel potent mPGES-1 inhibitor. To clarify the essential functional groups of 1 for inhibition of mPGES-1, we investigated this compound structure–activity relationship following substitution at the C(4)-position and N-alkylation at the N(1)-, the N(3)-, and the N(5)-positions of 1. To prepare the target compounds, we established a good methodology for selective N-alkylation of the imidazoquinolin-4-one, that is, selective alkylation of 1 at the N(3)- and N(5)-positions was achieved by use of an appropriate base and introduction of a protecting group at the nitrogen atom in the imidazole part, respectively. Replacement of the C(4)-oxo group with nitrogen- or sulfur- linked substituents gave decreased inhibitory activity for mPGES-1, and introduction of alkyl groups on the nitrogen atom at the N(1)-, the N(3)-, and the N(5)-positions resulted in even larger loss of inhibitory activity. These results revealed that the C(4)-oxo group, and the hydrogen atoms at the N(5)-position and the imidazole part were the best substituents.  相似文献   

18.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

19.
A series of novel 2-aminobenzimidazole derivatives were synthesized under microwave irradiation. Their biological activities were evaluated on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A number of the 2-aminobenzimidazole derivatives showed good inhibitory activities to AChE and BuChE. Among them, compounds 9, 12 and 13 were found to be >25-fold more selective for BuChE than AChE. No evidence of cytotoxicity was observed by MTT assay in PC12 cells or HepG2 cells exposed to 100 μM of the compounds. Molecular modeling studies indicate that the benzimidazole moiety of compounds 9, 12 and 13 forms a face-to-face π–π stacking interaction in a ‘sandwich’ form with the indole ring of Trp82 (4.09 Å) in the active gorge, and compounds 12 and 13 form a hydrogen bond with His438 at the catalytic site of BuChE. In addition, compounds 12 and 13 fit well into the hydrophobic pocket formed by Ala328, Trp430 and Tyr332 of BuChE. Our data suggest the 2-aminobenzimidazole drugs as promising new selective inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

20.
In order to understand the activity specificity of the hamster cytochrome P450 17 alpha-hydroxylase/17,20-lyase (P450c17), we have studied its structure/activity using three hamster P450c17 recombinant mutants (T202N/D240N/D407H). In transiently transfected COS-1 cells, the mutation T202N reduced 17 alpha-hydroxylation of pregnenolone and progesterone to 24 and 44% of wild type (WT), respectively, followed by reduced 17,20-cleavage to 71 and 67%, respectively. On the other hand, the mutation D240N decreased specifically 17,20-lyase activity to 61% of WT when incubated with pregnenolone while the mutation D407H only decreased 17 alpha-hydroxylation to 46% when incubated with progesterone.To comprehend the altered activity profiles of these hamster P450c17 mutants, we have elaborated a 3D model of the hamster P450c17 and compared it to our preceding model of the human P450c17. Analysis of the mutants with this model showed that, without direct contact to the substrates, these mutations transmit structural changes to the active site. By analogy, these results support the concept that any cellular changes modifying the external structure of P450c17, such as phosphorylation, could have influence on its active site and enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号