首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Interleukin (IL)-27, a heterodimeric cytokine, has been reported to be involved in the pathogenesis of autoimmune diseases through mediating differentiation of Th1 or Th17 cells and immune cell activity or survival. However, the origin and effects of IL-27 in joints of rheumatoid arthritis (RA) remain unclear. In this study, we investigated the distribution and anti-inflammatory roles of IL-27 in RA synovium. The IL-27 levels in plasma of RA patients, osteoarthritis (OA) patients, or healthy volunteers (n=15 per group) were equivalent and were at most 1 ng/ml, but the IL-27 level in synovial fluid of RA patients (n=15, mean 0.13 ng/ml; range 0.017-0.37 ng/ml) was significantly higher than that in synovial fluid of OA patients (n=15, mean 0.003 ng/ml; range 0-0.033 ng/ml) and potentially lower than in plasma. We analyzed the protein level of IL-27 produced by RA fibroblast-like synoviocytes (FLSs) or mononuclear cells (MNCs) from RA or OA synovial fluid or peripheral blood and showed that IL-27 in RA joints was derived from MNCs but not from FLSs. We also found by flow cytometry that IL-27-producing MNCs were CD14(+), and that these CD14(+)IL-27(+) cells were clearly detected in RA synovium but rarely in OA synovium by immunohistochemistry. Furthermore, we demonstrated that a relatively physiological concentration of IL-27 below 10 ng/ml suppressed the production of IL-6 and CCL20 from RA FLSs induced by proinflammatory cytokines through the IL-27/IL-27R axis. In the synovial fluid of RA, the IL-27 level interestingly had positive correlation with the IFN-γ level (r=0.56, p=0.03), but weak negative correlation with the IL-17A level (r=-0.30, p=0.27), implying that IL-27 in inflammatory joints of RA induces Th1 differentiation and suppresses the development or the migration of Th17 cells. These findings indicate that circulating IL-27-producing CD14(+) cells significantly infiltrate into inflamed regions such as RA synovium and have anti-inflammatory effects in several ways: both directly through the reduction of IL-6 production, and possibly through the induction of Th1 development and the suppression of Th17 development; and indirectly by regulation of recruitment of CCR6(+) cells, such as Th17 cells, through the suppression of CCL20 production. Our results suggest that such a serial negative feedback system could be applied to RA therapy.  相似文献   

2.

Introduction

A surprising feature of the inflammatory infiltrate in rheumatoid arthritis is the accumulation of neutrophils within synovial fluid and at the pannus cartilage boundary. Recent findings suggest that a distinct subset of IL-17-secreting T-helper cells (TH17 cells) plays a key role in connecting the adaptive and innate arms of the immune response and in regulating neutrophil homeostasis. We therefore tested the hypothesis that synovial fibroblasts bridge the biological responses that connect TH17 cells to neutrophils by producing neutrophil survival factors following their activation with IL-17.

Methods

IL-17-expressing cells in the rheumatoid synovium, and IL-17-expressing cells in the peripheral blood, and synovial fluid were examined by confocal microscopy and flow cytometry, respectively. Peripheral blood neutrophils were cocultured either with rheumatoid arthritis synovial fibroblasts (RASF) or with conditioned medium from RASF that had been pre-exposed to recombinant human IL-17, TNFα or a combination of the two cytokines. Neutrophils were harvested and stained with the vital mitochondrial dye 3,3''-dihexyloxacarbocyanine iodide before being enumerated by flow cytometry.

Results

TH17-expressing CD4+ cells were found to accumulate within rheumatoid synovial tissue and in rheumatoid arthritis synovial fluid. RASF treated with IL-17 and TNFα (RASFIL-17/TNF) effectively doubled the functional lifespan of neutrophils in coculture. This was entirely due to soluble factors secreted from the fibroblasts. Specific depletion of granulocyte–macrophage colony-stimulating factor from RASFIL-17/TNF-conditioned medium demonstrated that this cytokine accounted for approximately one-half of the neutrophil survival activity. Inhibition of phosphatidylinositol-3-kinase and NF-κB pathways showed a requirement for both signalling pathways in RASFIL-17/TNF-mediated neutrophil rescue.

Conclusion

The increased number of neutrophils with an extended lifespan found in the rheumatoid synovial microenvironment is partly accounted for by IL-17 and TNFα activation of synovial fibroblasts. TH17-expressing T cells within the rheumatoid synovium are likely to contribute significantly to this effect.  相似文献   

3.
Recent data suggest that IL-15 plays an important role in the pathogenesis of rheumatoid arthritis. In the present study, we hypothesized that elevated in the joints of rheumatoid arthritis, but not osteoarthritis, patients, IL-15 may exert its proinflammatory properties via the induction of IL-17, a cytokine known to stimulate synoviocytes to release several mediators of inflammation including IL-6, IL-8, GM-CSF and PGE2. To test this hypothesis, we first measured the levels of IL-17 and IL-15 using specific ELISA and found that synovial fluids of patients with rheumatoid arthritis, but not with osteoarthritis, contain high levels of these cytokines. A strong correlation between IL-15 and IL-17 levels in synovial fluids was observed. Among tested factors, LPS and TNF-alpha failed, IL-15 and IL-2 were equipotent, and PMA + ionomycin was far more efficient in the induction of IL-17 secretion by PBMCs isolated from healthy blood donors. Interestingly, synovial fluid cells, in contrast to PBMCs isolated from patients with rheumatoid arthritis, but not osteoarthritis, respond to PMA + ionomycin with much lower, comparable to IL-15-triggered IL-17 secretion. Moreover, PMA + ionomycin-triggered IL-17 secretion is completely or partially blocked in the presence of low doses of cyclosporin A or high doses of methylprednisolone, respectively. IL-15-triggered IL-17 secretion by PBMCs was completely inhibited by these drugs. Thus, our results suggest for the first time that IL-15 may represent a physiological trigger that via cyclosporin A and steroid sensitive pathways leads to the overproduction of IL-17 in the joints of rheumatoid arthritis patients.  相似文献   

4.
To analyze the role of Toll-like receptors (TLR) in the pathogenesis of rheumatoid arthritis, we have assessed the effects of stimulation of cultured synovial fibroblasts by the TLR-2 ligand bacterial peptidoglycan. By using high density oligonucleotide microarray analysis we identified 74 genes that were up-regulated >2.5-fold. Fourteen CC and CXC chemokine genes were among the genes with the highest up-regulation. Quantitative real-time PCR analysis confirmed up-regulation of granulocyte chemotactic protein (GCP)-2, RANTES, monocyte chemoattractant protein (MCP)-2, IL-8, growth-related oncogene-2, and to a lesser extent, macrophage-inflammatory protein 1alpha, MCP-1, EXODUS, and CXCL-16. GCP-2, RANTES, and MCP-2 were detected in culture supernatants of synovial fibroblasts stimulated with peptidoglycan. Chemokine secretion induced by stimulation of rheumatoid arthritis synovial fibroblasts via TLR-2 was functionally relevant as demonstrated by chemotaxis assays. GCP-2 and MCP-2 expression, which have not been reported previously in rheumatoid arthritis, was demonstrated in synovial tissue sections of patients diagnosed with rheumatoid arthritis but not in those with osteoarthritis. Correspondingly, synovial fluid levels were significantly higher in patients diagnosed with rheumatoid arthritis as compared with osteoarthritis. Thus, we present evidence for an induction of chemokine secretion by activation of synovial fibroblasts via TLR-2, possibly contributing to the formation of inflammatory infiltrates characteristically found in rheumatoid arthritis joints.  相似文献   

5.
6.
The pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) involves an abnormal chemokine regulation. The chemokine receptor CCR4 is necessary for T cell migration to the skin. We, therefore, studied if CCR4 and its ligand macrophage-derived chemokine (MDC/CCL22) could participate in spreading the disease between skin and joints by examining RA, PsA and osteoarthritis (OA) patients. In synovial fluid from RA and PsA patients we observed a significantly higher MDC/CCL22 level compared to OA patients. Additionally, the MDC/CCL22 protein was found to be elevated in RA and PsA plasma compared to OA and healthy volunteers. Flow cytometry revealed that most CD4+CCR4+ lymphocytes also co-expressed CD45RO. Neither the MDC/CCL22 level nor the expression of CCR4 correlated to CRP. Immunohistochemistry of the RA and OA synovial membrane demonstrated CCR4 to be expressed by mononuclear cells and endothelial cells. Our results show that MDC/CCL22 is present within the synovial membrane of RA and OA patients and in high amount in the synovial fluid of patients with RA and PsA. This will enable migration of CCR4 expressing memory cells supporting that MDC/CCR4 could play a role in attracting skin specific memory T cells to the joints.  相似文献   

7.
We report here that human synovial cells stimulated by interleukin-1 alpha and interleukin-1 beta express mRNA for both IL-8 (neutrophil chemotactic peptide) and monocyte chemotactic protein. IL-1 stimulated synovial cells from both osteoarthritis and rheumatoid arthritis patients exhibited similar mRNA expression of interleukin-8 and monocyte chemotactic protein. A capacity to produce factors selectively chemotactic for neutrophils, lymphocytes and monocytes provides a mechanism whereby synovial cells can facilitate inflammatory arthritis.  相似文献   

8.
Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis (RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines (e.g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-γ at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA.  相似文献   

9.
The expression of the IL-2R alpha-, beta-, and gamma-chains, CD25, CD122, and CD132, respectively, was investigated on fibroblast-like synoviocytes (FLS) and dermal fibroblasts (DF). Both protein and mRNA for CD122 and CD132 were observed but there was no evidence of CD25 expression. Quantification of the Ag binding sites for CD122 showed that FLS expressed 4 times more receptor molecules than DF. The functional capability of these receptors was confirmed by the production of monocyte chemoattractant protein-1 (MCP-1) in direct response to stimulation by IL-2, which could be inhibited by neutralizing anti-CD122 mAb. Both rheumatoid arthritis (RA) and osteoarthritis (OA) FLS and DF spontaneously produced MCP-1 in culture over a similar range of concentrations. However, RA and OA FLS produced significantly greater levels of MCP-1 following stimulation by IL-2 and IL-1 beta; RA FLS produced significantly more MCP-1 than OA FLS. Addition of exogenous IL-2 caused a slight, but significant, decrease in MCP-1 production by DF. The addition of neutralizing anti-CD122 mAb to FLS cultures partially, but significantly, reduced the IL-2-induced MCP-1 secretion, but did not effect either the spontaneous or IL-1 beta-induced secretion of MCP-1. Increased tyrosine phosphorylation was observed in FLS lysates following 30-min incubation with IL-2. In conclusion, in the inflamed synovium, as activated T cells migrate through the sublining and lining layer, T cell-derived IL-2 may activate FLS to secrete MCP-1, thus recruiting macrophages into the rheumatoid synovium and perpetuating inflammation.  相似文献   

10.
To delineate the functional significance of IL-17 Receptor (IL-17RA) and characterize the IL-17 producing T cell (Th17) subpopulation in psoriatic arthritis (PsA). Mononuclear cells from blood and synovial fluid (SF) were obtained from PsA (n=20), rheumatoid arthritis (RA, n=20) and osteoarthritis (OA, n=20) patients. Synoviocytes (FLS) were isolated from the synovium of RA (n=5), PsA (n=5) and OA (n=5) patients. IL-17RA expression in FLS was identified by western blotting (WB) and flowcytometry. T lymphocytes derived from the SF of these patients were studied to identify and phenotype the Th17 cells. The functional significance of IL-17RA was determined by evaluating its regulatory role on the production of proinflammatory cytokines and endopeptidase. IL-17RA expression was found to be significantly higher in FLS of RA (15.7%±4.9) and PsA (4.5%±0.9) in comparison to OA (1.14%±0.9). Western blot analyses showed that the relative intensity (RI) of IL-17RA protein was higher in RA and PsA compared to OA (Fisher exact, P<0.01). A significant enrichment of IL-17-producing CD4+ T cells (7.9%±2.8) was observed in the SF of PsA patients compared to that of OA patients (P<.001). Compared to OA-FLS, recombinant IL-17 induced higher levels of IL-6, IL-8, and MMP-3 production in PsA-FLS. Blockage of IL-17RA with an anti-IL-17RA antibody inhibited the production of IL-6, IL-8, and MMP-3. This is the first report to demonstrate the functional significance of IL-17RA in PsA. Results of this study support the hypothesis that IL-17RA blocking antibodies have the potential to be a therapeutic option for psoriatic arthritis.  相似文献   

11.
Interleukin-34 (IL-34), recently identified as a novel inflammatory cytokine and the second ligand for colony-stimulating factor-1 receptor, is known to play regulatory roles in the development, maintenance, and function of mononuclear phagocyte lineage cells – especially osteoclasts. Regarding its primary effect on osteoclasts, IL-34 has been shown to stimulate formation and activation of osteoclasts, which in turn magnifies osteoclasts-resorbing activity. In addition to its role in osteoclastogenesis, IL-34 has been implicated in inflammation of synovium via augmenting production of inflammatory mediators, in which altered IL-34 expression is regulated by pro-inflammatory cytokines responsible for cartilage degradation. Indeed, IL-34 has been documented to be highly expressed in inflamed synovium of rheumatoid arthritis (RA) and knee osteoarthritis (OA) patients, which are recognized as inflammatory arthritis. Furthermore, a number of clinical studies demonstrated that IL-34 levels were significantly increased in the circulation and synovial fluid of patients with RA and knee OA. Its levels were also found to be positively associated with disease severity – especially radiographic severity of both RA and knee OA patients. Interestingly, emerging evidence has accumulated that functional blockage of IL-34 with specific antibody can alleviate the severity of inflammatory arthritis. It is therefore reasonable to speculate that IL-34 may be developed as a potential biomarker and a new therapeutic candidate for inflammatory arthritis. To date, there are numerous studies showing IL-34 involvement and association with many aspects of inflammatory arthritis. Herein, this review aimed to summarize the recent findings regarding regulatory role of IL-34 in synovial inflammation-mediated cartilage destruction and update the current comprehensive knowledge on usefulness of IL-34-based treatment in inflammatory arthritis – particularly RA and knee OA.  相似文献   

12.
Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1beta protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis.  相似文献   

13.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

14.
In the present study we analyse chemokine expression in the remodelling of subchondral bone in arthritis patients. Trabecular bone biopsies were tested by immunohistochemistry to identify interleukin (IL)-8, GRO-alpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression. Subsequently, we evaluated by immunoassay the effect of interferon (IFN)-gamma and IL-6 on chemokine production by osteoarthritis (OA), rheumatoid arthritis (RA) and post-traumatic (PT) patients' isolated osteoblasts (OB). OB constitutively produced in situ IL-8, GRO-alpha, MCP-1, RANTES and MIP-1alpha. MIP-1beta was positive only in mononuclear cells. In RA many of these chemokines were also produced by mononuclear cells. IFN-gamma significantly down-regulated IL-8 and up-regulated MCP-1 produced by OB from all patients tested, whereas it did not affect the other chemokines analysed. Moreover, IFN-gamma reduced IL-1beta-stimulated IL-8 production but significantly increased both MCP-1 and RANTES. Interestingly, IL-6 significantly downregulated IFN-gamma-induced MCP-1 production, that was significantly lower in OA compared to RA patients. OB expressed chemokines both in vivo and in vitro suggesting that these cells are primary effectors in the bone capable of regulating autocrine/paracrine circuits that affect bone remodelling in these diseases.  相似文献   

15.
16.
This study analyzes the expression of monocyte chemoattractant protein-1 (MCP-1) by inflamed synovial tissue and defines its regulation in cultured synoviocytes. Synoviocytes from patients with rheumatoid arthritis and osteoarthritis express the 0.7-kb MCP-1 mRNA. Stimulation of synoviocytes with IL-1, TNF-alpha, LPS, platelet-derived growth factor, and transforming growth factor-beta-1, but not with basic fibroblast growth factor causes a marked increase in MCP-1 mRNA levels. Expression of the MCP-1 gene is inducible by activators of the protein kinase A (cAMP) and C (PMA) signal transduction pathways and is differentially regulated by the steroids dexamethasone and retinoic acid. Cultured synoviocytes de novo synthesize 12-, 15-, and 15.2-kDa MCP-1 proteins, which increase after stimulation with IL-1. Synovial tissues from donors without joint disease and from patients with rheumatoid or osteoarthritis were analyzed for MCP-1 mRNA expression by in situ hybridization. In these samples MCP-1 mRNA expressing cells were predominantly found in the sublining cell layers, whereas specimens of normal synovial tissue contained only few positive cells. These results identify synoviocytes as a source of MCP-1. Its expression is controlled by peptide regulatory factors that are known to be present in arthritic joints. Detection of cells producing MCP-1 mRNA in synovial tissues from patients with arthritis shows that this gene is expressed in vivo and suggests that MCP-1 can play a role in recruiting monocytes in joint inflammation.  相似文献   

17.
Adipokines such as adiponectin and visfatin/pre-B-cell colony-enhancing factor (PBEF) have been recently shown to contribute to synovial inflammation in rheumatoid arthritis (RA). In this study, we evaluated the pathophysiological implication of visfatin/PBEF in the molecular patterns of RA synovial tissue, focusing on RA synovial fibroblasts (RASFs), key players in RA synovium. Expression of visfatin/PBEF in synovial fluid and tissue of RA patients was detected by immunoassays and immunohistochemistry. RASFs were stimulated with different concentrations of visfatin/PBEF over varying time intervals, and changes in gene expression were evaluated at the RNA and protein levels using Affymetrix array, real-time PCR, and immunoassays. The signaling pathways involved were identified. The influence of visfatin/PBEF on fibroblast motility and migration was analyzed. In RA synovium, visfatin/PBEF was predominantly expressed in the lining layer, lymphoid aggregates, and interstitial vessels. In RASFs, visfatin/PBEF induced high amounts of chemokines such as IL-8 and MCP-1, proinflammatory cytokines such as IL-6, and matrix metalloproteinases such as MMP-3. Phosphorylation of p38 MAPK was observed after visfatin/PBEF stimulation, and inhibition of p38 MAPK showed strong reduction of visfatin-induced effects. Directed as well as general fibroblast motility was increased by visfatin/PBEF-induced factors. The results of this study indicate that visfatin/PBEF is involved in synovial fibroblast activation by triggering fibroblast motility and promoting cytokine synthesis at central sites in RA synovium.  相似文献   

18.

Introduction

A surprising feature of the inflammatory infiltrate in rheumatoid arthritis is the accumulation of neutrophils within synovial fluid and at the pannus cartilage boundary. Recent findings suggest that a distinct subset of IL-17-secreting T-helper cells (TH17 cells) plays a key role in connecting the adaptive and innate arms of the immune response and in regulating neutrophil homeostasis. We therefore tested the hypothesis that synovial fibroblasts bridge the biological responses that connect TH17 cells to neutrophils by producing neutrophil survival factors following their activation with IL-17.

Methods

IL-17-expressing cells in the rheumatoid synovium, and IL-17-expressing cells in the peripheral blood, and synovial fluid were examined by confocal microscopy and flow cytometry, respectively. Peripheral blood neutrophils were cocultured either with rheumatoid arthritis synovial fibroblasts (RASF) or with conditioned medium from RASF that had been pre-exposed to recombinant human IL-17, TNFα or a combination of the two cytokines. Neutrophils were harvested and stained with the vital mitochondrial dye 3,3'-dihexyloxacarbocyanine iodide before being enumerated by flow cytometry.

Results

TH17-expressing CD4+ cells were found to accumulate within rheumatoid synovial tissue and in rheumatoid arthritis synovial fluid. RASF treated with IL-17 and TNFα (RASFIL-17/TNF) effectively doubled the functional lifespan of neutrophils in coculture. This was entirely due to soluble factors secreted from the fibroblasts. Specific depletion of granulocyte–macrophage colony-stimulating factor from RASFIL-17/TNF-conditioned medium demonstrated that this cytokine accounted for approximately one-half of the neutrophil survival activity. Inhibition of phosphatidylinositol-3-kinase and NF-κB pathways showed a requirement for both signalling pathways in RASFIL-17/TNF-mediated neutrophil rescue.

Conclusion

The increased number of neutrophils with an extended lifespan found in the rheumatoid synovial microenvironment is partly accounted for by IL-17 and TNFα activation of synovial fibroblasts. TH17-expressing T cells within the rheumatoid synovium are likely to contribute significantly to this effect.  相似文献   

19.
Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P < 0.0001) and MCP-1 concentrations (r = 0.81, P < 0.0001), as did the numbers of granulocyte-derived microparticles (r = 0.89, P < 0.0001 and r = 0.93, P < 0.0001, respectively). In contrast, GM-CSF levels were decreased. These results demonstrate that microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis.  相似文献   

20.
Our previous reports revealed that calpain has proteoglycanase activity and exists in synovial fluid in osteoarthritis and rheumatoid arthritis. We examined the effects of cytokines on expression of the calpain-calpastatin system in fibroblastic synoviocytes (FLS). Primary cultures of human FLS from osteoarthritis (OA) and rheumatoid arthritis (RA) patients were stimulated with inflammatory cytokines and the amounts of m-calpain and calpastatin mRNAs expressed were determined by Northern blotting. Northern blots were subjected to computerized densitometer and band intensities were determined. Interleukin-1 (IL-1) down-regulated m-calpain and tissue-type calpastatin mRNA expression in OA and RA FLS. In RA FLS, although IL-6 did not alter m-calpain mRNA expression, IL-1 + tumor necrosis factor (TNF) and IL-1 + transforming growth factor (TGF) down-regulated m-calpain mRNA expression. These results provide new information about the effects of inflammatory cytokines on calpain and calpastatin system in OA and RA pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号