首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure of short thick filaments from Limulus muscle   总被引:3,自引:0,他引:3  
Shortened Limulus thick filaments, isolated from stimulated muscle, are structurally similar to long filaments, isolated from unstimulated muscle, except for length. Both have 3-fold screw symmetry with a helical repeat at approximately 43 nm, axial spacing of 14.5 nm between successive crowns of crossbridges and 4-fold rotational symmetry as estimated from the Bessel argument, by analysis of optical transforms of electron micrograph negatives of negatively stained samples. Both short and long filaments also have similar radii for the location of their crossbridges, thus similar diameters. Equal numbers of subunits/helical strand are also apparent on images of metal-shadowed long and short filaments. Since these data argue against molecular reorganization during filament shortening, it is suggested that the change in length of Limulus thick filaments may occur by reversible disaggregation of constituent protein molecules.  相似文献   

2.
Long, thick filaments (greater than 4.0 micrometer) rapidly and gently isolated from fresh, unstimulated Limulus muscle by an improved procedure have been examined by electron microscopy and optical diffraction. Images of negatively stained filaments appear highly periodic with a well-preserved myosin cross-bridge array. Optical diffraction patterns of the electron micrographs show a wealth of detail and are consistent with a myosin helical repeat of 43.8 nm, similar to that observed by x-ray diffraction. Analysis of the optical diffraction patterns, in conjunction with the appearance in electron micrographs of the filaments, supports a model for the filament in which the myosin cross-bridges are arranged on a four-stranded helix, with 12 cross-bridges per turn or each helix, thus giving an axial repeat every third level of cross-bridges (43.8 nm).  相似文献   

3.
We have produced three dimensional reconstructions, at a nominal resolution of 5 nm, of thick filaments from scorpion and Limulus skeletal muscle, both of which have a right-handed four-stranded helical arrangement of projecting subunits. In both reconstructions there was a distinct division of density within projecting subunits consistent with the presence of two myosin heads. Individual myosin heads appeared to be curved, with approximate dimensions of 16 X 5 X 5 nm and seemed more massive at one end. Our reconstructions were consistent with the two heads in a projecting subunit being arranged either antiparallel or parallel to each other and directed away from the bare zone. Although we cannot exclude the second of these interpretations, we favor the first as being more consistent with both filament models and also because it would enable easy phosphorylation of light chains. The antiparallel interpretation requires that the two heads within a subunit derive from different myosin molecules. In either interpretation, the two heads have different orientations relative to the thick filament shaft.  相似文献   

4.
Arrangement of myosin heads on Limulus thick filaments   总被引:3,自引:2,他引:1       下载免费PDF全文
The two myosin heads with a single surface subunit on thick filaments from chelicerate arthropod muscle may originate from the same, or from axially sequential molecules, as suggested by three-dimensional reconstructions. The resolution attained in the reconstructions, however, does not permit one to distinguish unequivocally between these two possible arrangements. We examined the effect of 0.6 M KCl on relaxed thick filaments separated from Limulus muscle and filaments in which nearest myosin heads were cross-linked by the bifunctional agent, 3,3'-dithio-bis[3'(2')-O-[6-propionylamino)hexanoyl]adenosine 5'-triphosphate (bis22ATP), in the presence of vanadate (Vi). In high salt, surface myosin dissolved from both native, relaxed filaments and those exposed to 1-2 mM dithiothreitol after cross-linking, but was retained on filaments with cross-linked heads. Since bis22ATP must form intermolecular bonds between myosin heads within each subunit to prevent myosin solubilization in high salt, we conclude that each of these heads originates from a different myosin molecule, as was previously predicted by the reconstructions.  相似文献   

5.
Native thick filaments from rabbit psoas muscle have been sequentially dissolved by incremental rises in salt concentration. Three quite separate stages of depolymerization can be detected; these presumably reflect constraints imposed on the disassembly process by variations in the packing of myosin and by the presence of other thick filament proteins.  相似文献   

6.
Frog skeletal muscle thick filaments are three-stranded   总被引:11,自引:7,他引:4       下载免费PDF全文
A procedure has been developed for isolating and negatively staining vertebrate skeletal muscle thick filaments that preserves the arrangement of the myosin crossbridges. Electron micrographs of these filaments showed a clear periodicity associated with crossbridges with an axial repeat of 42.9 nm. Optical diffraction patterns of these images showed clear layer lines and were qualitatively similar to published x-ray diffraction patterns, except that the 1/14.3-nm meridional reflection was somewhat weaker. Computer image analysis of negatively stained images of these filaments has enabled the number of strands to be established unequivocally. Both reconstructed images from layer line data and analysis of the phases of the inner maxima of the first layer line are consistent only with a three-stranded structure and cannot be reconciled with either two- or four-stranded models.  相似文献   

7.
Rabbit psoas muscle filaments, isolated in relaxing buffer from non-glycerinated muscle, have been applied to hydrophilic carbon films and stained with uranyl acetate. Electron micrographs were obtained under low-dose conditions to minimize specimen damage. Surrounding the filament backbone, except in the bare zone, is a fringe of clearly identifiable myosin heads. Frequently, both heads of individual myosin molecules are seen, and sometimes a section of the tail can be seen connecting the heads to the backbone. About half the expected number of heads can be counted, and they are uniformly distributed along the filament. The majority of heads appear curved. The remainder could be curved heads viewed from another aspect. Three times as many heads curve in a clockwise sense than in an anticlockwise sense, suggesting a preferential binding of one side of the head to the carbon film. The two heads of myosin molecules exhibit all the possible combinations of clockwise, anticlockwise and straight heads, and analysis of their relative frequencies suggests that the heads rotate freely and independently. The heads also adopt a wide range of angles of attachment to the tail. The lengths of heads cover a range of 14 to 26 nm, with a peak at 19 nm. The average maximum width is 6.5 nm. Both measurements are in excellent agreement with values for shadowed molecules. Since our data are from heads adsorbed to the film in relaxing conditions and the shadowed molecules were free of nucleotide, gross shape changes are not likely to be produced by nucleotide binding. The length of the link between the heads and the backbone was found to vary between 10 nm and 52 nm, with a broad peak at about 25 nm. Thus, the hinge point detected in the tail of isolated molecules was not usually the point from which the crossbridges swung out from the filament surface. The angle made by the link to the filament axis was between 20 degrees and 80 degrees, with a broad maximum around 45 degrees. These lengths and angles concur with our observation of an average limit of the crossbridges from the filament surface of 30 nm. This is sufficient to enable heads in the myofibril lattice to reach out beyond the nearest thin filament and should allow considerable flexibility for stereospecific binding to actin in active muscle.  相似文献   

8.
Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.  相似文献   

9.
The backbone of the myosin filament is an aggregate of alpha-helical coiled coil myosin rods. Its surface forms a three-stranded helix composed of myosin heads. Currently there is no adequate model to describe the organization of the myosin filament. It is proposed here that, in cross-section the light meromyosin (LMM) of 18 myosin molecules form an outer tube, with nine S2 forming the interior core. At the surface of the thick filament, myosin heads are arranged in three rows, giving the filament a periodicity of 14.3 nm per three myosin molecules. Two of these molecules are organized at an angle of 120 degrees to each other on the same level, while the third is shifted 7.2 nm along the filament axis. This packing gives a striation pattern of 7.2 nm by electron microscopy. An alternative model is also possible, in which the heads of the myosin molecules are uniformly spaced at an interval of 14.3 nm along the filament axis. The packing of individual molecules within the myosin filament is based on a regular pattern of charge on the 28 amino-acid repeat in the rod domain.  相似文献   

10.
The myosin crossbridge array, positions of non-crossbridge densities on the backbone, and the A-band "end filaments" have been compared in chemically skinned, unfixed, uncryoprotected relaxed, and rigor plaice fin muscles using the freeze-fracture, deep-etch, rotary-shadowing technique. The images provide a direct demonstration of the helical packing of the myosin heads in situ in relaxed muscle and show rearrangements of the myosin heads, and possibly of other myosin filament proteins, when the heads lose ATP on going into rigor. In the H-zone these changes are consistent with crossbridge changes previously shown by others using freeze-substitution. In addition, new evidence is presented of protein rearrangements in the M-region (bare zone), associated with the transition from the relaxed to the rigor state, including a 27-nm increase in the apparent width of the M-region. This is interpreted as being mostly due to loss or rearrangement of a nonmyosin (M9) protein component at the M-region edge. The structure and titin periodicity of the end-filaments are described, as are suggestions of titin structure on the myosin filament backbone.  相似文献   

11.
Regulation of muscle contraction via the myosin filaments occurs in vertebrate smooth and many invertebrate striated muscles. Studies of unphosphorylated vertebrate smooth muscle myosin suggest that activity is switched off through an intramolecular interaction between the actin-binding region of one head and the converter and essential light chains of the other, inhibiting ATPase activity and actin interaction. The same interaction (and additional interaction with the tail) is seen in three-dimensional reconstructions of relaxed, native myosin filaments from tarantula striated muscle, suggesting that such interactions are likely to underlie the off-state of myosin across a wide spectrum of the animal kingdom. We have tested this hypothesis by carrying out cryo-electron microscopy and three-dimensional image reconstruction of myosin filaments from horseshoe crab (Limulus) muscle. The same head-head and head-tail interactions seen in tarantula are also seen in Limulus, supporting the hypothesis. Other data suggest that this motif may underlie the relaxed state of myosin II in all species (including myosin II in nonmuscle cells), with the possible exception of insect flight muscle.The molecular organization of the myosin tails in the backbone of muscle thick filaments is unknown and may differ between species. X-ray diffraction data support a general model for crustaceans in which tails associate together to form 4-nm-diameter subfilaments, with these subfilaments assembling together to form the backbone. This model is supported by direct observation of 4-nm-diameter elongated strands in the tarantula reconstruction, suggesting that it might be a general structure across the arthropods. We observe a similar backbone organization in the Limulus reconstruction, supporting the general existence of such subfilaments.  相似文献   

12.
Structure and paramyosin content of tarantula thick filaments   总被引:1,自引:10,他引:1       下载免费PDF全文
Muscle fibers of the tarantula femur exhibit structural and biochemical characteristics similar to those of other long-sarcomere invertebrate muscles, having long A-bands and long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a paramyosin:myosin heavy chain molecular ratio of 0.31 +/- 0.079 SD. We studied the myosin cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively stained, and unidirectionally metal-shadowed specimens by electron microscopy and optical diffraction and filtering and found it to be similar to that previously described for the thick filaments of muscle of the closely related chelicerate arthropod, Limulus. Cross-bridges are disposed in a four-stranded right-handed helical arrangement, with 14.5-nm axial spacing between successive levels of four bridges, and a helical repeat period every 43.5 nm. The orientation of cross-bridges on the surface of tarantula filaments is also likely to be very similar to that on Limulus filaments as suggested by the similarity between filtered images of the two types of filaments and the radial distance of the centers of mass of the cross-bridges from the surfaces of both types of filaments. Tarantula filaments, however, have smaller diameters than Limulus filaments, contain less paramyosin, and display structure that probably reflects the organization of the filament backbone which is not as apparent in images of Limulus filaments. We suggest that the similarities between Limulus and tarantula thick filaments may be governed, in part, by the close evolutionary relationship of the two species.  相似文献   

13.
14.
The results discussed in the preceding paper (Levine, R. J. C., J. L. Woodhead, and H. A. King. 1991. J. Cell Biol. 113:563-572.) indicate that A-band shortening in Limulus muscle is a thick filament response to activation that occurs largely by fragmentation of filament ends. To assess the effect of biochemical changes directly associated with activation on the length and structure of thick filaments from Limulus telson muscle, a dually regulated tissue (Lehman, W., J. Kendrick-Jones, and A. G. Szent Gyorgyi. 1973. Cold Spring Harbor Symp. Quant. Biol. 37:319-330.) we have examined the thick filament response to phosphorylation of myosin regulatory light chains. In agreement with the previous work of J. Sellers (1981. J. Biol. Chem. 256:9274-9278), Limulus myosin, incubated with partially purified chicken gizzard myosin light chain kinase (MLCK) and [gamma 32P]-ATP, binds 2 mol phosphate/mole protein. On autoradiographs of SDS-PAGE, the label is restricted to the two regulatory light chains, LC1 and LC2. Incubation of long (greater than or equal to 4.0 microns) thick filaments, separated from Limulus telson muscle under relaxing conditions, with either intact MLCK in the presence of Ca2+ and calmodulin, or Ca2(+)-independent MLCK obtained by brief chymotryptic digestion (Walsh, M. P., R. Dabrowska, S. Hinkins, and D. J. Hartshorne. 1982. Biochemistry. 21:1919-1925), causes significant changes in their structure. These include: disordering of the helical surface arrangement of myosin heads as they move away from the filament backbone; the presence of distal bends and breaks, with loss of some surface myosin molecules, in each polar filament half; and the production of shorter filaments and end-fragments. The latter structures are similar to those produced by Ca2(+)-activation of skinned fibers (Levine, R. J. C., J. L. Woodhead, and H. A. King. J. Cell Biol. 113:563-572). Rinsing experimental filament preparations with relaxing solution before staining restores some degree of order of the helical surface array, but not filament length. We propose that outward movement of myosin heads and thick filament shortening in Limulus muscle are responses to activation that are dependent on phosphorylation of regulatory myosin light chains. Filament shortening may be due, in large part, to breakage at the filament ends.  相似文献   

15.
Clear images of myosin filaments have been seen in shadowed freeze-fracture replicas of single fibers of relaxed frog semitendinosus muscles rapidly frozen using a dual propane jet freezing device. These images have been analyzed by optical diffraction and computer averaging and have been modelled to reveal details of the myosin head configuration on the right-handed, three-stranded helix of cross-bridges. Both the characteristic 430-A and 140-150-A repeats of the myosin cross-bridge array could be seen. The measured filament backbone diameter was 140-160 A, and the outer diameter of the cross-bridge array was 300 A. Evidence is presented that suggests that the observed images are consistent with a model in which both of the heads of one myosin molecule tilt in the same direction at an angle of approximately 50-70 degrees to the normal to the filament long axis and are slewed so that they lie alongside each other and their radially projected density lies along the three right-handed helical tracks. Any perturbation of the myosin heads away from their ideal lattice sites needed to account for x-ray reflections not predicted for a perfect helix must be essentially along the three helical tracks of cross-bridges. Little trace of the presence of non-myosin proteins could be seen.  相似文献   

16.
Native thick filaments isolated from freshly prepared rabbit psoas muscle were found to be resistant to pressure-induced dissociation. With increasing pressure application and release, a bimodal distribution of filament lengths was observed. The shorter filament length is associated with filament breakage at the center of the bare zone, while the longer length is associated with relatively intact filaments. Intact filaments and filament halves decrease in length by no more than 20% after exposure to and release of 14,000 psi. Bimodal distributions were not observed in equivalent experiments performed on filaments isolated from muscle glycerinated and stored at -20 degrees C for 6 months. Instead, filament dissociation proceeds linearly as a function of increasing pressure. Filaments prepared from muscle glycerinated and stored for 2 and 4 months exhibited pressure-induced behavior intermediate between the filaments prepared from fresh muscle and filaments prepared from muscle stored for 6 months. Since there appears to be no difference in the protein profiles of the various muscle samples, it is possible that stabilization of the native thick filament against hydrostatic pressure arises from trapped ions that are leached out over time.  相似文献   

17.
Here we present evidence that strongly suggests that the well-documented phenomenon of A-band shortening in Limulus telson muscle is activation dependent and reflects fragmentation of thick filaments at their ends. Calcium activation of detergent-skinned fiber bundles of Limulus telson muscle results in large decreases in A-band (from 5.1 to 3.3 microns) and thick filament (from 4.1 to 3.3 microns) lengths and the release of filament end fragments. In activated fibers, maintained stretched beyond overlap of thick and thin filaments, these end fragments are translocated to varying depths within the I-bands. Here they are closely associated with fine filamentous structures that also span the gap between A- and I-bands and attach to the distal one-third of the thick filaments. End-fragments are rarely, if ever, present in similarly stretched and skinned, but unstimulated fibers, although fine "gap filaments" persist. Negatively stained thick filaments, separated from skinned, calcium-activated, fiber bundles, allowed to shorten freely, are significantly shorter than those obtained from unstimulated fibers, but are identical to the latter with respect to both the surface helical array of myosin heads and diameters. Many end-fragments are present on grids containing thick filaments from activated fibers; few, if any, on those from unstimulated fibers. SDS-PAGE shows no evidence of proteolysis due to activation and demonstrates the presence of polypeptides with very high molecular weights in the preparations. We suggest that thick filament shortening is a direct result of activation in Limulus telson muscle and that it occurs largely by breakage within a defined distal region of each polar half of the filament. It is possible that at least some of the fine "gap filaments" are composed of a titin-like protein. They may move the activation-produced, fragmented ends of thick filaments to which they attach, into the I-bands by elastic recoil, in highly stretched fibers.  相似文献   

18.
Isolation and composition of thick filaments from rabbit skeletal muscle   总被引:12,自引:0,他引:12  
A method has been developed for the isolation of thick filaments from rabbit skeletal muscle. We found that the thick filaments of this muscle are readily dispersed in the presence of a relaxing medium if the M and Z-line structures are first extracted in a low-salt solvent system. Thick filaments were separated from thin filaments by zone sedimentation in a 10% to 30% glycerol density gradient. The isolated filaments are homogeneous in length (1.5 to 1.6 μm) and retain the physical characteristics of these structures observed in sectioned muscle. Gel electrophoresis of thick filaments in the presence of sodium dodecyl sulfate showed a band of C-protein as well as bands with mobilities characteristic of the heavy and light chains of myosin. No other protein species was detected in these experiments. Thus our results provide evidence against the presence of a special protein component which would serve as the core of the skeletal thick filament structure. From the relative stain density of bands, the molar ratio of C-protein to myosin was estimated to be 1 to 5.8.  相似文献   

19.
20.
The active movement of fluorescence-labeled actin filaments along thick filaments isolated from molluscan smooth muscle was observed. Along a single thick filament, actin filaments moved toward the center of the thick filament at the speed of 1.19 +/- 0.38 microns s-1 (mean +/- SD, n = 42) and detached themselves from it upon reaching the central zone. Movement of actin also occurred in the opposite direction, i.e., away from the center, albeit at a much lower velocity (0.09 +/- 0.07 microns s-1, n = 17). Thus, the thick filament shows functional bipolarity in terms of velocity but does not determine the direction of the movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号