首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have mapped the mutants isolated by Nelson et al. (1981) that reduce the amount of rIIB protein synthesized during bacteriophage T4 infection of Escherichia coli B and characterized their rIIB expression in vivo. These mutants fall into four distinct groups in terms of mapping and phenotype. We have located the probable site of each mutation on the DNA sequence. We have also analyzed a number of other mutations near the initiating AUG of rIIB with respect to their rIIB expression. In some of these mutants, ribosomal recognition of the wild-type initiating AUG is precluded and so initiation occurs at a different AUG, which, in some instances, we have identified.  相似文献   

3.
Summary We have examined the response of phage T4 nonsense mutations located at various sites within the same cistron to different suppression agents. A wide range of suppression efficiency is found for both ochre (UAA) and amber (UAG) mutations under conditions where suppression provides a measurement of the amount of chain propagation past the mutated site. We have established a relationship between our measurement-the size of the phage yield-and the amount of rIIB product present in the infection. Our data suggest that the 1000-fold range of variations in yields observed in the rIIB cistron corresponds to a 30-fold range of variation in the level of rIIB product, i.e. in the relative frequency of chain propagation past the various nonsense codons included in our test.From the parallelism of response of any particular mutant to very different suppression mechanisms we conclude that the efficiency of suppression is site specific, that is to say, that the main factor determining the frequency of chain propagation at a nonsense codon by any type of suppression mechanism is the nucleotide sequence adjacent to the nonsense codon (reading context).We propose that the recognition of a natural termination signal involves a sequence longer than a nonsense codon and that nonsense codons outside of their natural environment induce variable termination rates which are reflected in the suppression potential.  相似文献   

4.
We have investigated suppressors of the bacteriophage T4 rIIB toxic polypeptide encoded by the rIIB frameshift mutation FC238. We have found suppressors that eliminate the toxic polypeptide by creating new translational termination codons, that diminish the toxicity of the polypeptide by altering the amino acid sequence of the toxic protein, that alter the rIIA protein so as to influence toxicity, and that diminish the amount of toxic polypeptide by reducing the quantity of gene expression from the rIIB (FC238) gene. We propose that the toxicity of the FC238 polypeptide derives from its peculiar, bipartite structure and high membrane avidity. Suppressors that detoxify the FC238 polypeptide by missense probably disturb the bipartite structure and/or the affinity for the membrane. The distribution of transition mutations obtained with a variety of mutagens contributes to an appreciation of intrinsic mutability differences. Lastly, although suppressors of FC238 toxicity might emerge in phage genes other than rIIB and rIIA, none have been found.  相似文献   

5.
6.
In the early region of the Escherichia coli lac repressor mRNA, translational reinitiation events triggered by nonsense codons occur over long distances and in a distinctive pattern not explained by simple use of the next available initiator triplet. Defined fusions of the restart sites to the lacZ coding region have been used to explore the basis for these reinitiation patterns and to ask whether the sites can function in independent initiation at the 5' end of an mRNA. The results obtained confirm earlier indications that the restart sites may have little or no inherent capacity for binding free 30S ribosomes. The data also add to growing evidence that primary sequence elements are important determinants of reinitiation efficiency. On the basis of the reinitiation activities for nonsense sites throughout the early region of the mRNA, we suggest that out-of-frame restarts and RNA secondary structure bridge long distances between the point of termination and downstream restart codons. Such bridging mechanisms could serve more generally as a means of propagating translational activity across long polycistronic mRNAs.  相似文献   

7.
Using as an example the E. coli lac I (repressor) gene product, it can be shown that DNA base-ratio is a major determinant of the detailed outcomes of both +1 (?2) and ?1 (+2) types of frameshift mutations. Potential reinitiation codons (AUG or GUG) and premature stop codons (UAA, UAG and UGA) occur in very different proportions depending on the type of frameshift and the DNA base-ratio.A comparison of the H. halobium bacteriorhodopsin precursor gene with other actual and theoretical genes reveals that the amino acid composition of the gene product is a second, important, determinant of the detailed outcome of frameshift mutations. Rules are formulated for the occurrence of particular codon, and hence amino acid, doublets in AT-GC-rich or intermediate base-ratio DNA as these affect frameshift-generated reinitiation and premature stop codons.  相似文献   

8.
The calicivirus minor capsid protein VP2 is expressed via termination/reinitiation. This process depends on an upstream sequence element denoted termination upstream ribosomal binding site (TURBS). We have shown for feline calicivirus and rabbit hemorrhagic disease virus that the TURBS contains three sequence motifs essential for reinitiation. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18 S rRNA leading to the model that hybridization between motif 1 and 18 S rRNA tethers the post-termination ribosome to the mRNA. Motif 2 and motif 2* are proposed to establish a secondary structure positioning the ribosome relative to the start site of the terminal ORF. Here, we analyzed human norovirus (huNV) sequences for the presence and importance of these motifs. The three motifs were identified by sequence analyses in the region upstream of the VP2 start site, and we showed that these motifs are essential for reinitiation of huNV VP2 translation. More detailed analyses revealed that the site of reinitiation is not fixed to a single codon and does not need to be an AUG, even though this codon is clearly preferred. Interestingly, we were able to show that reinitiation can occur at AUG codons downstream of the canonical start/stop site in huNV and feline calicivirus but not in rabbit hemorrhagic disease virus. Although reinitiation at the original start site is independent of the Kozak context, downstream initiation exhibits requirements for start site sequence context known for linear scanning. These analyses on start codon recognition give a more detailed insight into this fascinating mechanism of gene expression.  相似文献   

9.
Frameshift Suppression in Aminoacyl-tRNA Limited Cells   总被引:6,自引:1,他引:5       下载免费PDF全文
Under certain conditions aminoacyl-tRNA limitation can phenotypically suppress frameshift alleles. The observed suppression is due to an increase in abnormal translocation of ribosomes translating codons that have a short supply of aminoacyl-tRNA. The rIIB frameshift alleles of bacteriophage T4 are used here to pinpoint the sites of ribosome frameshifting caused by these hypothetical decoding errors. The data indicate that not all hungry codons are associated with abnormal translocation, only a relatively small subset. Analysis of the hungry codons which are associated with ribosome frameshifting points to the existence of severe context effects determining the shiftiness of these codons.  相似文献   

10.
11.
The fate of ribosomes between termination and initiation during protein synthesis is very basic, yet poorly understood. Here we found that translational reinitiation of the alkaline phosphatase gene occurs in Escherichia coli from an internal methionine codon when the authentic translation is prematurely terminated at a nonsense codon that is within seven codons upstream of the reinitiation codon (which we refer to as "reinitiation window"). Changing the reading frame downstream of the stop codon did not abolish the reinitiation, while inactivating the upstream initiation codon abolished the reinitiation. Moreover, depletion of the ribosome recycling factor (RRF), which disassembles posttermination ribosomes in conjunction with elongation factor G, did not influence the observed reinitiation. These findings suggest that posttermination ribosomes can undergo a transient idling state ready to reinitiate protein synthesis even in the absence of the Shine-Dalgarno (SD) sequence within the reinitiation window by evading disengagement from the mRNA.  相似文献   

12.
13.
The aim of this study was to evaluate the possibility of detecting nonsense and frame-shift mutations in exon 11 of brca1 gene by constructing fusion open reading frame (ORF) "exon 11 ORF-alpha-peptide of beta-galactosidase". The ability/inability of this newly constructed ORF to cause alpha-complementation in E. coli delta M15gal cells transformed by the plasmid with the ORF may reflect the absence/presence of nonsense and frame-shift mutations in the studied fragment. A single ORF fragment of exon 11 of brca1 gene--LacZ' gene was designed in pGEN7Zf plasmid, the plasmid was shown to cause Lac+ phenotype in E. coli delta M15gal. Four frame-shift deletion mutations were introduced into exon 11 sequence in the plasmid. Surprisingly, the frame-shift deletion mutations did not influence the ability of plasmids to induce Lac+ phenotype in E. coli delta M15gal in 3 cases and only one deletion mutation resulted in inability of the plasmid to form Lac+ phenotype in E. coli delta M15gal. We suppose that the phenomenon can be explained by the alpha-peptide translation reinitiation from inframe ATG codons situated within the exon 11 sequence. Seven inframe ATG sequences were found in exon 11, at least two in-frame ATG-containing fragments were demonstrated to cause reinitiation. On the other hand, the only deletion mutation resulted in inability of the plasmid to form Lac+ phenotype in E. coli delta M15gal did not leave LacZ' in-frame ATG in econ 11 sequence. We conclude that it is possible to detect frame-shift mutations by in-frame cloning with the LacZ' reporter gene, but this possibility is strongly impeded by the reinitiation of alpha-peptide translation from the in-frame ATG codons within the studied sequence.  相似文献   

14.
There are two types of frameshift mutation so far as out-of-phase reading of the genetic message is concerned. Firstly there are those frameshifts which result from the loss of one, or the addition of two adjacent, base pairs (?1(+2) type). Secondly there are those which result from the loss of two, or the addition of 1, base pair, in the DNA (?2(+1) type). We have compared the qualitative and quantitative consequences of these two types of frameshift upon the gene products of the lac I gene of E. coli and the trp A and trp B genes of E. coli and S. typhimurium. Both types of frameshift produce predominantly opal (UGA) rather than UAA (ochre) or UAG (amber) premature stop codons. Surprisingly the ?2(+1) type of frameshift leads to very few AUG or GUG reinitiation codons compared with the other, ?1(+2), type of frameshift.  相似文献   

15.
T4 gene 52 encodes one of the three subunits of T4 DNA topoisomerase. The T4 enzyme is required for normal phage DNA replication. I have cloned the entire gene, and it is expressed in uninfected E. coli cells. The sequence of 1966 nucleotides of T4 deletion delta sa9 surrounding gene 52 has been determined. The reading frame of the gene was established by identifying the first ten amino acids in the large open reading frame derived from the DNA sequence as those at the amino-terminus of the purified 52-protein. Based on the DNA sequence, 52-protein has 441 amino acids and a calculated peptide molecular weight of 50,583 daltons. This T4 topoisomerase subunit shares significant amino acid sequence homology with the gyrA subunit of bacterial gyrases and the carboxyl-half of yeast topoisomerase II in spite of the large differences in their sizes, confirming their functional equivalence in type II enzyme directed DNA topoisomerization. Amino acid sequence homology is highest in the amino-terminal portions of the equivalent peptides. The homology alignment suggests a consensus sequence organization surrounding the reactive tyrosine which is used to form the transient protein-DNA intermediate in the double-stranded DNA passing reaction. The delta sa9 deletion in T4 brings gene 52 to a location 30 nucleotides 3' from the rIIB gene whose C-terminal 167 codons are also reported here.  相似文献   

16.
The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins.  相似文献   

17.
18.
We have determined the DNA sequence for the portion of the Escherichia coli tryptophan (trp) operon spanning trpC, which codes for the bifunctional enzyme N-(5′-phosphoribosyl)-anthranilic acid isomerase/indole-3-glycerol phosphate synthetase. The coding region consists of 1356 nucleotides, directing the synthesis of a polypeptide 452 amino acids in length. The predicted protein sequence is consistent with the amino acid composition of the pure enzyme, and with all known partial peptide sequences derived from this molecule. The enzyme is of particular functional interest, because it contains the catalytic activities for two sequential reactions in tryptophan biosynthesis in a single polypeptide chain.The nucleotide sequences of the junctions between trpC and its flanking genes, trpD and trpB, have also been determined. The trpD-trpC junction consists of six untranslated nucleotides and translation of trpC initiates at the second of two adjacent AUG codons. The trpC termination codon is separated from trpB by 11 nucleotides. The short non-translated regions flanking trpC distinguish it from trpA and trpD, whose initiation codons overlap the termination codons of the preceding genes (trpB and trpE), respectively. These differences in the intercistronic regions may reflect functional relationships between the products of adjacent genes in the operon.  相似文献   

19.
I have analysed the coding regions of 96 eukaryotic genes for their use of iso-coding codons. Specific codons occur more frequently in specific positions in all members of some gene families than would be expected if codon choice was determined solely by the frequency of codon usage. In the absence of evidence a priori for selection for particular codons at particular positions, I term such co-occurring codons “coincident codons”. Coincident codons are not confined to particular regions of genes, and their occurrence is not detectably linked with the location of introns in the genomic sequence. Their presence is partly but not completely explained by the exchange of sequence between similar functional genes within a species: homologous genes from different organisms also possess the same codons at some sites with greater than expected frequencies. The relative excess of coincident codons correlates well with the overall length of the genes analysed, but not with the length of mRNA or coding regions, or with qualitative features of gene structure or expression. This, and the unusual sequence environment of coincident codons, suggests that they are a feature of the overall secondary structure of the heterogeneous nuclear RNA. Such considerations suggest approaches for optimizing the expression of exogenous genes in eukaryotic systems, and for predicting the structure of genes for which only partial sequence data is available.  相似文献   

20.
Translational control of the GCN4 gene involves two short open reading frames in the mRNA leader (uORF1 and uORF4) that differ greatly in the ability to allow reinitiation at GCN4 following their own translation. The low efficiency of reinitiation characteristic of uORF4 can be reconstituted in a hybrid element in which the last codon of uORF1 and 10 nucleotides 3' to its stop codon (the termination region) are substituted with the corresponding nucleotides from uORF4. To define the features of these 13 nucleotides that determine their effects on reinitiation, we separately randomized the sequence of the third codon and termination region of the uORF1-uORF4 hybrid and selected mutant alleles with the high-level reinitiation that is characteristic of uORF1. The results indicate that many different A+U-rich triplets present at the third codon of uORF1 can overcome the inhibitory effect of the termination region derived from uORF4 on the efficiency of reinitiation at GCN4. Efficient reinitiation is not associated with codons specifying a particular amino acid or isoacceptor tRNA. Similarly, we found that a diverse collection of A+U-rich sequences present in the termination region of uORF1 could restore efficient reinitiation at GCN4 in the presence of the third codon derived from uORF4. To explain these results, we propose that reinitiation can be impaired by stable base pairing between nucleotides flanking the uORF1 stop codon and either the tRNA which pairs with the third codon, the rRNA, or sequences located elsewhere in GCN4 mRNA. We suggest that these interactions delay the resumption of scanning following peptide chain termination at the uORF and thereby lead to ribosome dissociation from the mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号