首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
I have determined the nucleotide sequences of the three major early promoters of bacteriophage T7 (A1, A2, A3). The sequences confirm the two main homologies found between other known promoters for E. coli RNA polymerase (nucleoside triphosphate:RNA nucleotidyl transferase, E.C. 2. 7. 7. 6). In particular, all three T7 promoters show a very good match with the -35 region homology; the A2 and A3 promoters share a 17 basepair sequence in this region. On the other hand, the match with the Pribnow Box homology is much less pronounced and different for each T7 promoter.  相似文献   

3.
4.
Four T7 RNA polymerase promoters contain an identical 23 bp sequence.   总被引:18,自引:0,他引:18  
M D Rosa 《Cell》1979,16(4):815-825
  相似文献   

5.
6.
7.
In our previous analysis of the information at binding sites on nucleic acids, we found that most of the sites examined contain the amount of information expected from their frequency in the genome. The sequences at bacteriophage T7 promoters are an exception, because they are far more conserved (35 bits of information content) than should be necessary to distinguish them from the background of the Escherichia coli genome (17 bits). To determine the information actually used by the T7 RNA polymerase, promoters were chemically synthesized with many variations and those that function well in an in vivo assay were sequenced. Our analysis shows that the polymerase uses 18 bits of information, so the sequences at phage genomic promoters have significantly more information than the polymerase needs. The excess may represent the binding site of another protein.  相似文献   

8.
9.
10.
11.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

12.
13.
14.
T7噬菌体启动子能被T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动转录 ,为研究两个系统转录的关键碱基 ,将合成的T7噬菌体启动子 1 1变异体与报道基因CAT基因连在一起。体内CAT和体外狭缝RNA杂交实验显示 : 1 1碱基是T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动T7启动子的关键碱基之一。  相似文献   

15.
Information content of binding sites on nucleotide sequences   总被引:73,自引:0,他引:73  
Repressors, polymerases, ribosomes and other macromolecules bind to specific nucleic acid sequences. They can find a binding site only if the sequence has a recognizable pattern. We define a measure of the information (R sequence) in the sequence patterns at binding sites. It allows one to investigate how information is distributed across the sites and to compare one site to another. One can also calculate the amount of information (R frequency) that would be required to locate the sites, given that they occur with some frequency in the genome. Several Escherichia coli binding sites were analyzed using these two independent empirical measurements. The two amounts of information are similar for most of the sites we analyzed. In contrast, bacteriophage T7 RNA polymerase binding sites contain about twice as much information as is necessary for recognition by the T7 polymerase, suggesting that a second protein may bind at T7 promoters. The extra information can be accounted for by a strong symmetry element found at the T7 promoters. This element may be an operator. If this model is correct, these promoters and operators do not share much information. The comparisons between R sequence and R frequency suggest that the information at binding sites is just sufficient for the sites to be distinguished from the rest of the genome.  相似文献   

16.
Cloning and expression of the bacteriophage T3 RNA polymerase gene   总被引:11,自引:0,他引:11  
C E Morris  J F Klement  W T McAllister 《Gene》1986,41(2-3):193-200
  相似文献   

17.
18.
19.
Bacteriophages T7 and T3 encode DNA-dependent RNA polymerases that are 82% homologous, yet exhibit a high degree of specificity for their own promoters. A region of the RNA polymerase gene (gene 1) that is responsible for this specificity has been localized using two approaches. First, the RNA polymerase genes of recombinant T7 x T3 phage that had been generated in other laboratories in studies of phage polymerase specificity were characterized by restriction enzyme mapping. This approach localized the region that determines promoter specificity to the 3' end of the polymerase gene, corresponding to the carboxyl end of the polymerase protein distal to amino acid 623. To define more closely the region of promoter specificity, a series of hybrid T7/T3 RNA polymerase genes was constructed by in vitro manipulation of the cloned genes. The specificity of the resulting hybrid RNA polymerases in vitro and in vivo indicates that an interval of the polymerase that spans amino acids 674 to 752 (the 674 to 752 interval) contains the primary determinant of promoter preference. Within this interval, the amino acid sequences of the T3 and T7 enzymes differ at only 11 out of 79 positions. It has been shown elsewhere that specific recognition of T3 and T7 promoters depends largely upon base-pairs in the region from -10 to -12. An analysis of the preference of the hybrid RNA polymerases for synthetic T7 promoter mutants indicates that the 674 to 752 interval is involved in identifying this region of the promoter, and suggests that another domain of the polymerase (which has not yet been identified) may be involved in identifying other positions where the two consensus promoter sequences differ (most notably at position -15).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号