首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolation and partial characterization of a glycoprotein isolated from individual gastric aspirates and extracts of gastric mucosae solubilized with N-acetylcysteine is described.The isolated glycoproteins and the glycoproteins from proteolysed gastric aspirates showed virtually the same carbohydrate and amino acid composition. The results indicate that they consist of a protein core to which are attached carbohydrate side-chains composed of four sugars: N-acetylgalactosamine N-acetylglucosamine, galactose, fucose showing a ratio of 1 : 3 : 4 : 2. Superimposed on this basic structure were additional sugar residues, the blood-group determinants. The results also suggest that the carbohydrate side-chains are linked by an alkali-labile O-glycosidic linkage to the threonine and serine residues of the protein core, N-acetylgalactosamine forming the link.  相似文献   

2.
The obligate, thermophilic, acidophilic mycoplasma, Thermoplasma acidophilum, grows optimally at 56° C and pH 2.0. Its plasma membrane possessed 21–22 protein bands that were resolved by polyacrylamide gel electrophoresis. One major membrane protein, molecular weight 152 000, which stained for carbohydrate with periodic acid-Schiff reagent, accounted for 32% (w/w) of the total membrane proteins. It was isolated and further purified by concanavalin A affinity chromatography. The carbohydrate content amounted to less than 10% (w/w) compared to that of the entire glycoprotein. The carbohydrate moiety consisted mainly of mannose residues with branched α 1 → 2 linkages at the non-reducing ends of the glycopeptide as determined by permethylation followed by gas chromatography-mass spectrometry analysis. The reducing end was an N-glycosidic linkage between asparagine and N-acetylglucosamine. The amino acid composition of this glycoprotein showed 62 mol% hydrophobic residues, while the acidic amino acid content contributed 9 mol% more than that of the basic amino acids. The existence of membrane glycoproteins in the procaryotic, wall-less T. acidophilum may provide a protective coat for the plasma membrane. The stereochemistry and the conformation of the carbohydrate chains, in conjunction with water turgor, may contribute to the rigidity of the membrane and the cation binding.  相似文献   

3.
Methylation analysis of human transcortin showed that this glycoprotein contains N-glycosidically linked oligosaccharide chains of N-acetyllactosamine type, most of the chains being biantennary and others tri- and/or tetraantennary. The carbohydrate chains of transcortin are also heterogenous with respect to the content of fucose and the position of the glycosidic linkages.  相似文献   

4.
A high molecular weight glycoprotein antigen was isolated by size exclusion chromatography on Sepharose 4B from an extract of the yeast Saccharomyces cerevisiae. The glycoprotein antigen Sc 500 was shown to be identical to the antigen termed gp200 previously isolated (Heelan et al., 1991). The MW of Se 500 was determined to be about 500 kDa by size exclusion chromatography on Superose 6 and 460 kDa ± 20k Da by size-exclusion chromatography/multi-angle laser light scattering (SEC/MALLS). Sc 500 contained 90% mannose and traces of N-acetylglucosamine. The amino acid composition revealed that serine and threonine were the most abundant amino acids of the protein part. By alkaline borohydride treatment some, but not all bonds between protein and carbohydrate were broken. This indicates that the main type of linkage between protein and carbohydrate is O-glycosidic and that a minor type is of N-glycosidic nature. Methylation analysis revealed that the mannose residues were connected by 1 → 2 and 1 → 3 linkages with 1 → 2, 1→ 6 linked branch points.Purified Sc 500 was subjected to a series of chemical and enzymatic modifications followed by studies of antibody binding activity. Treatments with both periodate and alkaline sodium borohydride reduced the human serum IgA, IgG and monoclonal IgM antibody binding activity of Sc 500 whereas trypsin and pronase did not affect its ability to bind these antibodies. The mannosidase Manα1 → 2,3,6Man reduced the IgM binding to Sc 500 while the other enzymes included in this experiment (Manα1→2 Man, Manβ1 →4GlcNAc and PNGase F) had no effect on the antibody binding.  相似文献   

5.
A protein which contains 2-aminoethylphosphonic acid (AEP) has been isolated from the ciliate protozoan Tetrahymena thermophila. The protein contains about 30% carbohydrate with both N- and O-glycosidic linkages to the polypeptide and 8% AEP which is attached only to the O-linked glycoside. The amino group of AEP is unreactive to dansyl chloride as is the amino terminus of the protein. The polypeptide portion of the molecule, Mr 22,500, contains 22% glycine, 5.5% hydroxyproline, and is quite acidic. The phosphoprotein is found in the cell membranes. Its synthesis is inhibited by tunicamycin to the same extent which the antibiotic inhibits cell division.  相似文献   

6.
The hydrazinolysis procedure currently used for the release ofN-glycosidic carbohydrate chains was applied to glycocalicin. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis into a neutral (5%) and several acidic fractions. The neutral compounds were passed over Bio-Gel P-4. SomeN-glycosidic oligosaccharide-alditols, of theN-acetyllactosamine type as well as of the oligomannoside type, were found to be present. However, oligosaccharide-alditols derived fromO-glycosidic carbohydrate chains were also found, indicating a partial cleavage of GalNAc1-OSer/Thr linkages under the hydrazinolysis conditions applied. One of the neutralO-glycosidic components was characterized, by 500-MHz1H-NMR spectroscopy in combination with sugar analysis, as the following pentasaccharidealditol: In addition the afuco analogue of this compound was obtained.  相似文献   

7.
Ascorbic acid oxidase (E.C.1.10.3.3) from the green zucchini squash (Cucurbita pepo medullosa) is a copper-containing glycoprotein which catalyzes the reaction:l-ascorbic acid +1/2 O2l-dehydroascorbic acid + H2O. The carbohydrate content of the purified plant glycoprotein amounted to 3% (w/w), and monosaccharide analysis revealed the carbohydrate moiety to be of theN-glycosidic type. The carbohydrate chains were released from the apoenzyme by digestion with PNGase-F immobilized on Sepharose 4B. After fractionation on Bio-Gel P-2 and purification on Mono-Q, the neutral oligosaccharide was investigated by 500-MHz1H-NMR spectroscopy. The primary structure of theN-linked carbohydrate chain was established to be: Abbreviations AAO ascorbic acid oxidase - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - Man mannose - Xyl xylose - GLC gas-liquid chromatography - FPLC fast protein liquid chromatography - NMR nuclear magnetic resonance - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

8.
Cutinase, an extracellular enzyme from Fusarium solani f. pisi contains about 4% covalently attached carbohydrates. Treatment of the enzyme with alkali resulted in β-elimination and generation of dehydroamino acids absorbing at 241 nm. NaB3H4 treatment in 0.1 N KOH followed by hydrolysis of the labeled protein gave rise to tritiated alanine, α-aminobutyric acid, phenylalanine, and tyrosine. Chemical and enzymatic degradation of the labeled phenylalanine showed that this amino acid was a 1:1 mixture of D- and L-stereo-isomers and that3H was equally distributed between the α- and β-positions. Therefore it is concluded that this glycoprotein contained 0-glycosidic linkages not only at serine and threonine residues but also at β-hydroxyphenylalanine and β-hydroxytyrosine; the latter two have not been found heretofore.  相似文献   

9.
1. The glycopeptides derived from a proteolytic digest of sialic acid-free α1-acid glycoprotein were separated on a DEAE-cellulose column into five main fractions. 2. The average molecular weight of these glycopeptides was 2400, except for one fraction whose molecular weight was 3100. The average molecular weight of the sialic acid-free carbohydrate units was found to be 2200. From these data and the carbohydrate content of the native protein and the assumed molecular weight of 44000, it was concluded that α1-acid glycoprotein probably possesses five carbohydrate units. The sialic acid-containing carbohydrate units of this glycoprotein have an average molecular weight of 3000, except for one unit the molecular weight of which is significantly higher. 3. The N-, non-N- and C-terminal amino acids of the main glycopeptides were determined. Aspartic acid and threonine occur in most peptides. Alanine, glycine, proline, serine and lysine were present in varying amounts. Traces of other amino acids were also found. 4. The amino acid sequence of three main glycopeptides was established and indicated that these glycopeptides are located at different positions of the polypeptide chain of the glycoprotein. These sequences are: Asp(NH2)-Pro-Lys; Thr-Asp(NH2)-Ala; Asp(NH2)-Gly-Thr. 5. From the results of a series of chemical reactions (periodate oxidation, hydrazinolysis, dinitrophenylation, mild acid hydrolysis) it was shown that the hydroxyl group of the N-terminal threonine and the -amino group of lysine are free and that the β-carboxyl group of aspartic acid is present as amide. It was concluded that this amide group is involved in the carbohydrate–polypeptide linkages of at least four carbohydrate units of α1-acid glycoprotein. 6. The carbohydrate composition of the sialic acid-free glycopeptides was determined in terms of moles of neutral hexoses, glucosamine and fucose/mole. 7. Fucose, at least to the larger part, is not linked to sialic acid, and its (glycosidic) linkage is significantly more stable toward acid hydrolysis than the bond of the sialyl residues. 8. Heterogeneity of the carbohydrate units of α1-acid glycoprotein was found with regard to size and to content of fucose and sialic acid.  相似文献   

10.
A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata   总被引:4,自引:1,他引:3  
A basic, galactose-rich style glycoprotein (GaRSGP) encoded by a previously characterized style-specific cDNA (NaPRP4) has been isolated from the styles of Nicotiana alata and structurally characterized. The glycoprotein is associated with cell walls in the transmitting tract and is composed of approximately 25% (w/w) protein and 75% (w/w) carbohydrate. The purified glycoprotein appears as a smear of between 45–120 kDa on SDS—PAGE; the deglycosylated protein backbone has an apparent molecular weight of approximately 30 kDa. The glycoprotein is rich in the amino acids lysine, proline, and hydroxyproline and in the monosaccharides galactose and arabinose. It is one of only a few proline/hydroxyproline-rich glycoproteins (P/HRGPs) to be characterized both as a cDNA-clone and protein. Glycans are attached to the protein backbone through both O - and N -glycosidic linkages with the majority of the carbohydrate being O -linked and consisting of short, highly branched chains terminating primarily in galactose residues. A carbohydrate epitope(s) is found on both GaRSGP and another style-specific glycoprotein but not on glycoproteins from other tissues. This finding provides further evidence for the existence of a style-specific carbohydrate epitope(s) which may play a role in style function.  相似文献   

11.
BackgroundThe development of an efficient vaccine and broadly cross-neutralizing antibodies of hepatitis C virus (HCV) remains a priority. The heavily glycosylated viral envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Bacteria-derived unmethylated CpG DNA, a potent stimulator of immune cells, is important for vaccine research.MethodsHere, the immunogenicities of wild type (WT) E1E2, five N-glycosylation site mutated E1E2 glycoproteins, and five CpG-coupled E1E2 N-glycosylation mutated glycoproteins were analyzed in BALB/c mice by DNA vaccination using in vivo electroporation.ResultsThe E1E2 protein expression levels were examined and shown to be unaffected by these N-glycosylation mutations. We found that a CpG-coupled E1-N209D-E2-N430D DNA vaccine (named CpG-E1E2-M4) induced the highest cellular immune response compared to the WT E1E2, CpG-E1E2, and other mutants. Furthermore, the CpG-E1E2-M4 anti-serum effectively neutralized the infection of cell-cultured HCV (HCVcc, genotype 2a)- and HCV pseudo particles (HCVpp, genotypes 1 to 7) to Huh-7.5.1 hepatocytes. Additionally, CpG-E1E2-M4 enhanced the Interleukin-12 (IL-12) production and antigen-presenting activity of CD11c+ dendritic cells (DCs) by inducing CD4+ Th1 polarization and the production of perforin and granzyme B (GrB) in CD8+ T cells.ConclusionsAs our knowledge this is the first study revealing that the naturally poor immunogenicity of E1E2 can be enhanced by the deletion of N-glycans combined with the addition of immune activator CpG by DNA vaccination.General significanceDeletion of N-glycans can enhance viral immunogenicity. The selected CpG-E1E2-M4 mutant is a novel potential HCV DNA vaccine that elicits enhanced CD4+ Th1 and CD8+ T cell responses and neutralizing antibody production against HCV infection. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

12.
The properties of several compounds useful as models for three-dimensional conformational studies and the investigation of the chemical degradation of glycopeptide linkages both of the N- and O-glycosidic type are described. Using the method of differential chemical shift in H2O and D2O as solvents, the carbon NMR spectrum of N-acetylglucosaminylasparagine, 1-N-acetyl-β-d-glucopyranosylamine, and 1-N-acetyl-2-acetamido-β-d-glucopyranosylamine has been assigned. Electron impact mass spectra of the peracetylated derivatives of the latter two compounds show a peak apparently unique to glycopyranosylamides at me = 269, no analog of which is observed in the mass spectra of other peracetylated sugars. As models of the α-O-glycosidic linkage, fully assigned carbon NMR spectra of α-methyl-N-acetylgalactosamine (GalNAc), α-methyl-3-O-methyl GalNAc,and -GlcNAc as well as the disaccharide Glc-β-1 → 3 GalNAc are reported. Because certain anomalies in the chemical shifts and 1JCH observed in the disaccharide and in O-glycosylated glycoproteins are not observed in the simple model compounds, they may result from conformational interactions in the glycopeptides.  相似文献   

13.
The secondary structure of the peptide segment around the carbohydrate-peptide linkage in glycoproteins was predicted by using the Chou and Fasman determination. Such a study was carried out for 9 O-glycosidically linkages and 28 N-glycosidically linkages. In the case of O-glycosidically linkages, the residue Ser or Thr involved in the linkage always belongs to a β-turn. In the case of N-glycosidically linkages, 19 out of the 28 Asn studied belong to a β-turn. A predicted determination concerning the whole protein moiety of 9 glycoproteins in order to obtain some information concerning the spatial organization of the entire glycoprotein was carried out also. It seems that carbohydrate moiety takes place outside the glycoprotein.  相似文献   

14.
The carbohydrate chains of the human-parotid, proline-rich glycoprotein are linked through a single type of carbohydrate-peptide linkage (asparaginyl-N-acetyl-glucosamine). The structure of the internal part of the carbohydrate chains, determined by chemical, enzymic, and g.l.c.-m.s. methods, includes the trimannosyl-di-N-acetylchitobiose core involved in the carbohydrate-peptide linkage. Furthermore, an L-fucose residue is linked to the 2-acetamido-2-deoxy-d-glucosyl residue linked to the L-asparaginyl residue. The sequence of the peripheral part of the chains has also been determined as α-L-Fucp→β-d-Galp→β-d-GlcpNAc→α-d-Manp, suggesting a double-branched, basic carbohydrate structure.  相似文献   

15.
Glycoproteins are difficult to crystallize because they have heterogeneous glycans composed of multiple monosaccharides with considerable rotational freedom about their O-glycosidic linkages. Crystallographers studying N-glycoproteins often circumvent this problem by using β1,2-N-acetylglucosaminyltransferase I (MGAT1)–deficient mammalian cell lines, which produce recombinant glycoproteins with immature N-glycans. These glycans support protein folding and quality control but can be removed using endo-β-N-acetylglucosaminidase H (Endo H). Many crystallographers also use the baculovirus-insect cell system (BICS) to produce recombinant proteins for their work but have no access to an MGAT1-deficient insect cell line to facilitate glycoprotein crystallization in this system. Thus, we used BICS-specific CRISPR–Cas9 vectors to edit the Mgat1 gene of a rhabdovirus-negative Spodoptera frugiperda cell line (Sf-RVN) and isolated a subclone with multiple Mgat1 deletions, which we named Sf-RVNLec1. We found that Sf-RVN and Sf-RVNLec1 cells had identical growth properties and served equally well as hosts for baculovirus-mediated recombinant glycoprotein production. N-glycan profiling showed that a total endogenous glycoprotein fraction isolated from Sf-RVNLec1 cells had only immature and high mannose-type N-glycans. Finally, N-glycan profiling and endoglycosidase analyses showed that the vast majority of the N-glycans on three recombinant glycoproteins produced by Sf-RVNLec1 cells were Endo H-cleavable Man5GlcNAc2 structures. Thus, this study yielded a new insect cell line for the BICS that can be used to produce recombinant glycoproteins with Endo H-cleavable N-glycans. This will enable researchers to combine the high productivity of the BICS with the ability to deglycosylate recombinant glycoproteins, which will facilitate efforts to determine glycoprotein structures by X-ray crystallography.  相似文献   

16.
The structures of the carbohydrate chains present in fragments of a large-molecular-weight glycoprotein, epiglycanin, cleaved from the surface of viable TA3-Ha murine mammary carcinoma ascites cells and purified by gel filtration, were studied by immunochemical and chemical methods. Inhibitory activities for neuraminidase-treated and untreated glycoprotein material in the hemagglutination of NN-specific human erythrocytes by eight purified lectins were determined. Excellent inhibition was obtained in the Bauhinia purpurea, Arachis hypogaea, Iberis amara, and Wistaria floribunda systems, and weak inhibition against the Ricinus communis and Glycine max lectins. No activity against hemagglutination by the Phaseolus vulgaris and Phaseolus limensis lectins was observed. These results, when compared with those obtained by periodate oxidation, alkaline borohydride reduction, and partial methylation, suggest the possible presence of six different carbohydrate chains of 1 to 5 components in length, having as terminal groups N-acetylneuraminic acid, galactose, and 2-acetamido-2-deoxygalactose. All chains are attached to a single polypeptide chain by O-glycosyl bonds involving a 2-acetamido-2-deoxygalactose residue and a serine or threonine residue. It is suggested that the native molecule of epiglycanin of molecular weight 500,000 contains more than 500 carbohydrate chains attached to a single polypeptide chain of ≈ 1,300 amino acid units.  相似文献   

17.
The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite''s glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.  相似文献   

18.
The N-glycosylation sites of human Tamm-Horsfall glycoprotein from one healthy male donor have been characterized, based on an approach using endoproteinase Glu-C (V-8 protease, Staphylococcus aureus ) digestion and a combination of chromatographic techniques, automated Edman sequencing, and fast atom bombardment mass spectrometry. Seven out of the eight potential N-glycosylation sites, namely, Asn52, Asn56, Asn208, Asn251, Asn298, Asn372, and Asn489, turned out to be glycosylated, and the potential glycosylation site at Asn14, being close to the N-terminus, is not used. The carbohydrate microheterogeneity on three of the glycosylation sites was studied in more detail by high-pH anion-exchange chromatographic profiling and 500 MHz1H-NMR spectroscopy. Glycosylation site Asn489 contains mainly di- and tri-charged oligosaccharides which comprise, among others, the GalNAc4 S (beta1-4)GlcNAc terminal sequence. Only glycosylation site Asn251 bears oligomannose-type carbohydrate chains ranging from Man5GlcNAc2to Man8GlcNAc2, in addition to a small amount of complex- type structures. Profiling of the carbohydrate moieties of Asn208 indicates a large heterogeneity, similar to that established for native human Tamm-Horsfall glycoprotein, namely, multiply charged complex-type carbohydrate structures, terminated by sulfate groups, sialic acid residues, and/or the Sda-determinant.   相似文献   

19.
《Experimental mycology》1990,14(2):190-194
Most of the manosyl transferase activity inPhycomyces blakesleeanus was found associated with a crude membrane fraction sedimenting at 48,400g (Rav). Triton X-100 and Nonidet NP-40 inhibited 95% of the enzyme activity. Digitonin caused 47% of inhibition and when removed, the membrane-bound enzymatic activity increased by about 35%; no activity was detected in supernatant. The rate of mannosyl transfer increased in the presence of 4 or 8 mM Mg2+ ions. Several compounds, including glycoproteins, mucoran, and mucoric acid, failed to act as acceptors of mannosyl residues. Guanosine diphosphate and guanosine monophosphate inhibited the transfer of mannosyl residues by 60 and 19%, respectively. Mannosyl transfer involves participation of lipid intermediates.β elimination of the product synthesizedin vitro revealed the presence of mannose, mannobiose, and mannotriose, suggesting that they are bound to protein viaO-glycosidic linkages. The alkaline-resistant carbohydrate part of the glycoproteins consisted mainly of mannose residues that were probably connected to the protein moiety throughN-glycosidic bonds.  相似文献   

20.
Tamm–Horsfall urinary glycoprotein. The chemical composition   总被引:7,自引:0,他引:7       下载免费PDF全文
1. A revised amino acid and carbohydrate composition of human Tamm-Horsfall glycoprotein is presented. 2. No significant differences were obtained in the amino acid composition of Tamm-Horsfall glycoprotein isolated from patients with cystic fibrosis. 3. The glycoprotein was shown to possess a high half-cystine content of 1 per 11-12 amino acid residues, which has been confirmed by performic acid oxidation and S-alkylation with iodoacetate and iodoacetamide. No thiol groups were detected in the glycoprotein. 4. Treatment of the glycoprotein with 0.5m-sodium hydroxide at 4 degrees C for 2 days did not release heterosaccharide material, which suggests that the predominant carbohydrate-protein linkages present are not of the O-glycosidic type. 5. No N-terminal amino acid was detected in the glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号