首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

The FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis plays a fundamental role in proliferation and differentiation of dendritic cells (DCs). As DCs play an important role in rheumatoid arthritis (RA) immunopathology we studied in detail the Flt3L/CD135 axis in RA patients.

Methods

The levels of Flt3L in (paired) serum and synovial fluid (SF) were quantified by enzyme-link immunosorbent assay (ELISA). Expression of Flt3L and CD135 in paired peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) was quantified by fluorescence-activated cell sorting (FACS). The expression of Flt3L, CD135 and TNF-Converting Enzyme (TACE) in synovial tissues (STs) and in vitro polarized macrophages and monocyte-derived DCs (Mo-DCs) was assessed by quantitative PCR (qPCR). CD135 ST expression was evaluated by immunohistochemistry and TACE ST expression was assessed by immunofluorescence. Flt3L serum levels were assessed in RA patients treated with oral prednisolone or adalimumab.

Results

Flt3L levels in RA serum, SF and ST were significantly elevated compared to gout patients and healthy individuals (HI). RA SF monocytes, natural killer cells and DCs expressed high levels of Flt3L and CD135 compared to HI. RA ST CD68+ and CD163+ macrophages, CD55+ fibroblast-like synoviocytes (FLS), CD31+ endothelial cells or infiltrating monocytes and CD19+ B cells co-expressed TACE. IFN-γ-differentiated macrophages expressed higher levels of Flt3L compared to other polarized macrophages. Importantly, Flt3L serum levels were reduced by effective therapy.

Conclusions

The Flt3L/CD135 axis is active in RA patients and is responsive to both prednisolone and adalimumab treatment. Conceivably, this ligand receptor pair represents a novel therapeutic target.  相似文献   

2.
Monocytes function as crucial innate effectors in the pathogenesis of chronic inflammatory diseases, including autoimmunity, as well as in the inflammatory response against infectious pathogens. Human monocytes are heterogeneous and can be classified into three distinct subsets based on CD14 and CD16 expression. Although accumulating evidence suggests distinct functions of monocyte subsets in inflammatory conditions, their pathogenic roles in autoimmune diseases remain unclear. Thus, we investigated the phenotypic and functional characteristics of monocytes derived from synovial fluid and peripheral blood in RA patients in order to explore the pathogenic roles of these cells. In RA patients, CD14+CD16+, but not CD14dimCD16+, monocytes are predominantly expanded in synovial fluid and, to a lesser degree, in peripheral blood. Expression of co-signaling molecules of the B7 family, specifically CD80 and CD276, was markedly elevated on synovial monocytes, while peripheral monocytes of RA and healthy controls did not express these molecules without stimulation. To explore how synovial monocytes might gain these unique properties in the inflammatory milieu of the synovial fluid, peripheral monocytes were exposed to various stimuli. CD16 expression on CD14+ monocytes was clearly induced by TGF-β, although co-treatment with IL-1β, TNF-α, or IL-6 did not result in any additive effects. In contrast, TLR stimulation with LPS or zymosan significantly downregulated CD16 expression such that the CD14+CD16+ monocyte subset could not be identified. Furthermore, treatment of monocytes with IFN-γ resulted in the induction of CD80 and HLA-DR expression even in the presence of TGF-β. An in vitro assay clearly showed that synovial monocytes possess the unique capability to promote Th1 as well as Th17 responses of autologous peripheral CD4 memory T cells. Our findings suggest that the cytokine milieu of the synovial fluid shapes the unique features of synovial monocytes as well as their cardinal role in shaping inflammatory T-cell responses in RA.  相似文献   

3.
We have previously described enrichment of antigen-presenting HLA-DR+ nuclear RelB+ dendritic cells (DCs) in rheumatoid arthritis (RA) synovium. CD123+HLA-DR+ plasmacytoid DCs (pDCs) and their precursors have been identified in human peripheral blood (PB), lymphoid tissue, and some inflamed tissues. We hypothesized recruitment of pDCs into the inflamed RA synovial environment and their contribution as antigen-presenting cells (APCs) and inflammatory cells in RA. CD11c+ myeloid DCs and CD123+ pDCs were compared in normal and RA PB, synovial fluid (SF), and synovial tissue by flow cytometry, immunohistochemistry, and electron microscopy and were sorted for functional studies. Nuclear RelB-CD123+ DCs were located in perivascular regions of RA, in a similar frequency to nuclear RelB+CD123- DCs, but not normal synovial tissue sublining. Apart from higher expression of HLA-DR, the numbers and phenotypes of SF pDCs were similar to those of normal PB pDCs. While the APC function of PB pDCs was less efficient than that of PB myeloid DCs, RA SF pDCs efficiently activated resting allogeneic PB T cells, and high levels of IFN-γ, IL-10, and tumor necrosis factor α were produced in response to incubation of allogeneic T cells with either type of SF DCs. Thus, pDCs are recruited to RA synovial tissue and comprise an APC population distinct from the previously described nuclear RelB+ synovial DCs. pDCs may contribute significantly to the local inflammatory environment.  相似文献   

4.
IL-10, IL-13, IFN-γ, tumor necrosis factor (TNF)-α, LT-α, CD154, and TNF-related activation-induced cytokine (TRANCE) were expressed by 2-20% of rheumatoid arthritis (RA) synovial tissue CD4+ memory T cells, whereas CD4+ cells that produced IL-2, IL-4, or IL-6 were not detected. Expression of none of these molecules by individual CD4+ cells correlated with the exception of TRANCE and IL-10, and TRANCE and TNF-α. A correlation between expression of IL-10 and CCR7, LT-α and CCR6, IFN-γ and CCR5, and TRANCE and CXCR4 was also detected.  相似文献   

5.

Introduction  

Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity.  相似文献   

6.
In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet+ CD3+ iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24+CD3+ cells are α-GalCer-CD1d-Tet+CD3+ iNKT cells, which primarily consist of either the CD4+ or CD8+ subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8+ iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.  相似文献   

7.
The LAIR-1 receptor is expressed on a majority of mononuclear leukocytes. It is used as a biomarker when testing synovial fluid for evidence of rheumatoid arthritis (RA). The primary objective of this study was to measure T cell- and monocyte/macrophage-specific LAIR-1 expression in RA patients and compare this to LAIR-1 expression in osteoarthritis (OA) patients and healthy individuals. LAIR-1 expression was significantly decreased in circulating CD4+ T cells in RA patients compared to both OA patients and healthy individuals. In contrast, LAIR-1 is high in CD14+ monocytes and local CD68+ macrophages in synovial tissues from RA patients. Upon stimulation with TNF-α, LAIR-1 expression decreased in T-helper (Th)1 and Th2 CD4+ T cells from healthy donors. These results indicate that LAIR-1 may exert different functions on T cells and monocytes/macrophages and suggest that LAIR-1 may be a novel therapeutic target for the treatment of RA.  相似文献   

8.

Introduction

TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro.

Methods

TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry.

Results

TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts.

Conclusions

The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.  相似文献   

9.
Background We have recently reported the presence of CD8+ and CD4/8 double‐negative (DN) natural killer T (NKT) lymphocytes in sooty mangabeys. To investigate differences in the two NKT cell subsets, we compared the phenotype and function of sooty mangabey CD8+ and DN NKT cells. Methods Flow‐sorted NKT lymphocytes from one SIV‐negative sooty mangabey were subjected to limiting dilution cloning. Invariant NKT clones were characterized by flow cytometry and cytokine ELISA. Results The majority of NKT clones displayed an effector memory phenotype and expressed CXCR3 and NKG2D. While CD8+ NKT subsets expressed significantly higher levels of granzyme B and perforin and produced more IFN‐γ, the DN NKT subsets secreted significantly more IL‐4, IL‐13, and IL‐10. Conclusions The Th1 and Th2 cytokine bias of CD8+ and DN NKT cells, respectively, indicates the presence of functionally heterogeneous populations of NKT cells in sooty mangabeys.  相似文献   

10.
11.
Interleukin-26 (IL-26), a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by epithelial cells. IL-26 has been also reported overexpressed in Crohn''s disease, suggesting that it may be involved in the physiopathology of chronic inflammatory disorders. Here, we have analyzed the expression and role of IL-26 in rheumatoid arthritis (RA), a chronic inflammatory disorder characterized by joint synovial inflammation. We report that the concentrations of IL-26 are higher in the serums of RA patients than of healthy subjects and dramatically elevated in RA synovial fluids compared to RA serums. Immunohistochemistry reveals that synoviolin+ fibroblast-like synoviocytes and CD68+ macrophage-like synoviocytes are the main IL-26-producing cells in RA joints. Fibroblast-like synoviocytes from RA patients constitutively produce IL-26 and this production is upregulated by IL-1-beta and IL-17A. We have therefore investigated the role of IL-26 in the inflammatory process. Results show that IL-26 induces the production of the proinflammatory cytokines IL-1-beta, IL-6, and tumor necrosis factor (TNF)-alpha by human monocytes and also upregulates the expression of numerous chemokines (mainly CCL20). Interestingly, IL-26-stimulated monocytes selectively promote the generation of RORgamma t+ Th17 cells, through IL-1-beta secretion by monocytes. More precisely, IL-26-stimulated monocytes switch non-Th17 committed (IL-23R or CCR6 CD161) CD4+ memory T cells into Th17 cells. Finally, synovial fluids from RA patients also induce Th17 cell generation and this effect is reduced after IL-26 depletion. These findings show that IL-26 is constitutively produced by RA synoviocytes, induces proinflammatory cytokine secretion by myeloid cells, and favors Th17 cell generation. IL-26 thereby appears as a novel proinflammatory cytokine, located upstream of the proinflammatory cascade, that may constitute a promising target to treat RA and chronic inflammatory disorders.  相似文献   

12.
The pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) involves an abnormal chemokine regulation. The chemokine receptor CCR4 is necessary for T cell migration to the skin. We, therefore, studied if CCR4 and its ligand macrophage-derived chemokine (MDC/CCL22) could participate in spreading the disease between skin and joints by examining RA, PsA and osteoarthritis (OA) patients. In synovial fluid from RA and PsA patients we observed a significantly higher MDC/CCL22 level compared to OA patients. Additionally, the MDC/CCL22 protein was found to be elevated in RA and PsA plasma compared to OA and healthy volunteers. Flow cytometry revealed that most CD4+CCR4+ lymphocytes also co-expressed CD45RO. Neither the MDC/CCL22 level nor the expression of CCR4 correlated to CRP. Immunohistochemistry of the RA and OA synovial membrane demonstrated CCR4 to be expressed by mononuclear cells and endothelial cells. Our results show that MDC/CCL22 is present within the synovial membrane of RA and OA patients and in high amount in the synovial fluid of patients with RA and PsA. This will enable migration of CCR4 expressing memory cells supporting that MDC/CCR4 could play a role in attracting skin specific memory T cells to the joints.  相似文献   

13.
14.
Immunoglobulin D (IgD) is a surface immunoglobulin that is expressed as either membrane IgD (mIgD) or secreted IgD (sIgD). Researchers have shown that sIgD is often elevated in patients with autoimmune diseases. The possible roles of sIgD on the function of peripheral blood mononuclear cells (PBMCs) in rheumatoid arthritis (RA) are still unclear. In this study, we compared the expression of sIgD, mIgD and IgD receptor (IgDR) in RA patients and healthy controls, and investigated the effect of sIgD on the function of PBMCs. We found that the levels of sIgD, mIgD and IgDR were significantly higher in RA patients compared with healthy controls. The concentrations of sIgD were positively correlated with soluble receptor activator of nuclear factor-κB ligand (sRANKL), rheumatoid factor (RF) and C-reactive protein (CRP) in RA patients. Strikingly, IgD could enhance the proliferation of PBMCs and induce IL-1α, IL-1β, TNF-α, IL-6 and IL-10 production from PBMCs. Moreover, the percentage of activated T cell subsets (CD4+CD69+, CD4+CD154+) and activated B cell subsets (CD19+CD23+, CD19+CD21+, CD19+IgD+ and CD19-CD138+) were increased by IgD. The percentage of unactivated T cell subset (CD4+CD62L+) and immature B cell subset (CD19+IgM+IgD-) were decreased by IgD in PBMCs. Furthermore, the expressions of IgDR on T and B cells were significantly increased by treatment with IgD. Our results demonstrate that IgD enhanced the activation of PBMCs, which may contribute to RA pathogenesis. Therefore, IgD could be a potential novel immunotherapeutic target for the management of RA.  相似文献   

15.
Invariant or Type 1 NKT cells (iNKT cells) are a unique population of lymphocytes that share characteristics of T cells and natural killer (NK) cells. Various studies have shown that positive costimulatory pathways such as the CD28 and CD40 pathways can influence the expansion and cytokine production by iNKT cells. However, little is understood about the regulation of iNKT cells by negative costimulatory pathways. Here, we show that in vivo activation with α-GalCer results in increased cytokine production and expansion of iNKT cells in the absence of programmed cell death ligand-1 (PD-L1, B7-H1, and CD274). To study whether PD-L1 deficiency on NKT cells would enhance antigen-specific T-cell responses, we utilized CD8+ OT-1 OVA transgenic T cells. α-GalCer enhanced the expansion and cytokine production of OT-1 CD8+ cells after adoptive transfer into wild-type recipients. However, this expansion was significantly enhanced when OT-1 CD8+ T cells were adoptively transferred into PD-L1−/− recipients. To extend these results to a tumor model, we used the B16 melanoma system. PD-L1−/− mice given dendritic cells loaded with antigen and α-GalCer had a significant reduction in tumor growth and this was associated with increased trafficking of antigen-presenting cells and CD8+ T cells to the tumors. These data demonstrate that abrogating PDL1:PD-1 interactions during the activation of iNKT cells amplifies an anti-tumor response when coupled with DC vaccination.  相似文献   

16.
CD25+CD4+ regulatory T cells participate in the regulation of immune responses. We recently demonstrated the presence of CD25brightCD4+ regulatory T cells with a capacity to control T cell proliferation in the joints of patients with rheumatoid arthritis. Here, we investigate a possible accumulation of these regulatory T cells in the inflamed joint of different rheumatic diseases including rheumatoid arthritis. The studies are also extended to analyze whether cytokine production can be suppressed by the regulatory T cells. Synovial fluid and peripheral blood samples were obtained during relapse from 36 patients with spondyloarthropathies, 21 adults with juvenile idiopathic arthritis and 135 patients with rheumatoid arthritis, and the frequency of CD25brightCD4+ T cells was determined. Of 192 patients, 182 demonstrated a higher frequency of CD25brightCD4+ T cells in synovial fluid than in peripheral blood. In comparison with healthy subjects, the patients had significantly fewer CD25brightCD4+ T cells in peripheral blood. For functional studies, synovial fluid cells from eight patients were sorted by flow cytometry, and the suppressive capacity of the CD25brightCD4+ T cells was determined in in vitro cocultures. The CD25brightCD4+ T cells suppressed the production of both type 1 and 2 cytokines including interleukin-17, as well as proliferation, independently of diagnosis. Thus, irrespective of the inflammatory joint disease investigated, CD25brightCD4+ T cells were reduced in peripheral blood and enriched in the joint, suggesting an active recruitment of regulatory T cells to the affected joint. Their capacity to suppress both proliferation and cytokine secretion might contribute to a dampening of local inflammatory processes.  相似文献   

17.
Rheumatoid arthritis (RA) is a chronic recurrent and systemic inflammatory disease affecting around 1% of the population, that primarily involves the joints. In this study, we determined the Th1/Th2 lymphocytes ratio at the site of rheumatoid inflammation and the influence of the synovial fluid (SF) on the secretory and proliferative function in synovial fluid mononuclear cells (SFMC) and peripheral blood mononuclear cells (PBMC), obtained from patients with RA. Our results showed significant differences concerning the mononuclear cells and the CD4/CD8 ratio in synovial fluid and peripheral blood of patients. In SF prevailed Th1 cells, while in peripheral blood we found another cytokine profile of T lymphocytes. Also synovial fluid lymphocytes had a low PHA-stimulated blastogenic response. Patients plasma and synovial fluid showed an inhibitory effect on prolipheration indexes.  相似文献   

18.
Background Human Vα24 natural killer T (NKT) cells are activated by the specific ligand, α-galactosylceramide (α-GalCer), in a CD1d-dependent manner. Potent anti-tumor activity of activated NKT cells has been previously demonstrated. Methods We conducted a phase I study with α-GalCer-pulsed antigen presenting cells (APCs) administered in the nasal submucosa of patients with head and neck cancer, and evaluated the safety and feasibility of such a treatment. Nine patients with unresectable or recurrent head and neck cancer received two treatments 1 week apart, of 1 × 108 of α-GalCer-pulsed autologous APCs into the nasal submucosa. Results During the clinical study period, no serious adverse events (Common Terminology Criteria for Adverse Events version 3.0 greater than grade 3) were observed. After the first and the second administration of α-GalCer-pulsed APCs, an increased number of NKT cells was observed in four patients and enhanced natural killer activity was detected in the peripheral blood of eight patients. Conclusion The administration of α-GalCer-pulsed APCs into the nasal submucosa was found to be safe and induce anti-tumor activity in some patients.  相似文献   

19.
ObjectiveThe regulatory role of the Th9 cells along with its signature cytokine IL-9 in human immune system and its aberrant activation in autoimmune diseases is currently under investigation. We are reporting the functional significance of IL-9 in the pathogenesis of autoimmune inflammatory arthritis.MethodsCD3+ T cells were obtained from peripheral blood (PB) and synovial fluid (SF) of psoriatic arthritis (PsA), rheumatoid arthritis (RA), and osteoarthritis (OA) patients. MTT, FACS based CFSE dilution assay and apoptosis assay (Annexin-V) were performed to determine the pro-growth/survival effect of human recombinant IL-9 on activated CD3+ T cells. Immunoblots were performed to determine the signaling proteins responsible for the progrowth/survival effect of IL-9.ResultsSF of PsA and RA was enriched with IL-9 producing CD3+ T cells compared to the SF in OA. IL-9 level measured by ELISA was significantly elevated in PsA and RA patients compared to SF in OA (<.001). Activated T cells of PsA and RA had higher levels of IL-9 receptors. IL-9 promoted proliferation and survival of the CD3+ T cells of PB and SF of PsA and RA and compared to untreated (media) controls (p < .005, t-test). IL-9 induced proliferation of T cells was dependent on PI3K/Akt/mTOR signaling pathway.ConclusionIL-9 is functionally active, and is a pro-growth/survival factor for the localized pathologic T cells in the synovium of inflammatory arthritis. The pro-growth/survival effect is mediated by the activation of mTOR kinase cascade. To our knowledge, this is the first report of a functional role of IL-9 in human autoimmune arthritis.  相似文献   

20.
The magnitude and durability of a plasmid DNA vaccine-induced immune response is shaped by immune effector molecules at the site of vaccination. In the present study, we show that antigen expression is modified by type II NKT cells, after interaction with a β2-microglobulin-independent CD1d receptor. After activation, during the first days following plasmid DNA vaccination, NKT cells release IL-5 and MCP-1, leading to a T helper 0 (TH0) cytokine/chemokine profile and a stronger CD8+/CD4+ T cell immune response. Our data indicate that this phenomenon was induced through the strong TH1 chemokine MCP-1 during the early phases of plasmid DNA vaccination because injecting the type II NKT cell-associated MCP-1 during the first 5 days led to 2–3-fold increases in vaccine-elicited T cell responses. This study demonstrates a critical role for NKT cells in plasmid DNA vaccine-induced immune responses. Manipulation of NKT cell function or co-administration of MCP-1 may represent novel methods for enhancing immune responses to plasmid DNA vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号