首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—The brain-specific antigens 14·3·2, GFA, A5, F3, D1, D2, D3 and C1 were quantitated in a short-term astroglial cell culture taken as a model of glial cells, and in synaptosomes, synaptosomal membranes and synaptic vesicles as neuronal material. Furthermore, the antigens were quantitated in newborn rat brain, as this served as the starting material for the cell culture. The membrane antigens C1, D1, D2 and D3 were absent from the cultured astroglia, indicating a neuronal origin for these antigens. C1 was enriched 3-fold in synaptosomes and synaptosomal membranes and more than 10-fold in synaptic vesicles indicating that this antigen might be a marker protein for nerve endings. The name Synaptin is introduced for this antigen. Conversely, the data on the antigens D1, D2 and D3 indicated that these antigens were not restricted to the synaptosomes although they were of neuronal origin. Trace amounts of the cathodal part of the heterogeneous cytoplasmic antigen 14·3·2 were present in the cell culture, possibly originating from a few contaminating neurons. The cytoplasmic antigens A5 and F3 were found both in the astroglial culture and in the synaptosomal fraction. F3, however, was found in low concentration in the synaptosomes and 3-fold enriched in newborn rat brain compared to rat brain from 35-day-old rats or to 21-day-old brain cell cultures. It was therefore regarded as a brain specific fetal antigen. The antigen GFA was highly enriched in the astroglial culture compared to whole brain and only trace amounts were found in the synaptosomal fraction supporting the astroglial origin of this antigen.  相似文献   

2.
3.
We have previously detected two brain-specific and development-dependent N-glycans [H. Shimizu, K. Ochiai, K. Ikenaka, K. Mikoshiba, and S. Hase (1993) J. Biochem. 114, 334-338]. In the present study we attempted to analyze specific N-glycans detected in neurological mutant mice. N-glycans in cerebrum and cerebellum obtained from 3-week-old neurological mutant mice (jimpy, staggerer, and shiverer) were compared with those obtained from normal mice. N-glycans liberated from the cerebrum and cerebellum by hydrazinolysis-N-acetylation were pyridylaminated, and pyridylamino derivatives of N-glycans thus obtained were separated into neutral and five acidic fractions by anion exchange chromatography. PA-N-glycans in each fraction were compared with those obtained from normal mice by reversed-phase HPLC, and the following results were obtained. The ratio of the two brain-type N-glycans, Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-1) to GlcNAcbetaManalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fuca1-6)GlcNAc (BA-2), was higher in staggerer mice than other mutant mice and normal mice. Sia-Gal-BA-2, triantennary N-glycans, and bisected biantennary N-glycans were found in the cerebellum of shiverer and staggerer mice but not in normal or jimpy mice. High-mannose type N-glycans were not altered in mutant mice brains. The amounts of disialylbiantennary N-glycans and disialylfucosylbiantennary N-glycans were lower in jimpy mouse cerebellum than in normal mouse cerebellum, but were higher in shiverer mouse. Some alterations of N-glycans specific to mutations were successfully identified, suggesting that expression of component(s) of the N-glycan biosynthetic pathway was specifically affected in neurological mutations.  相似文献   

4.
Ma J  Peng L  Guo J  Lu Q  Lu C  Zhang L 《The Plant cell》2007,19(6):1980-1993
To elucidate the molecular mechanism of photosystem II (PSII) assembly, we characterized the low psii accumulation2 (lpa2) mutant of Arabidopsis thaliana, which is defective in the accumulation of PSII supercomplexes. The levels and processing patterns of the RNAs encoding the PSII subunits are unaltered in the mutant. In vivo protein-labeling experiments showed that the synthesis of CP43 (for chlorophyll a binding protein) was greatly reduced, but CP47, D1, and D2 were synthesized at normal rates in the lpa2-1 mutant. The newly synthesized CP43 was rapidly degraded in lpa2-1, and the turnover rates of D1 and D2 were higher in lpa2-1 than in wild-type plants. The newly synthesized PSII proteins were assembled into PSII complexes, but the assembly of PSII was less efficient in the mutant than in wild-type plants. LPA2 encodes an intrinsic thylakoid membrane protein, which is not an integral subunit of PSII. Yeast two-hybrid assays indicated that LPA2 interacts with the PSII core protein CP43 but not with the PSII reaction center proteins D1 and D2. Moreover, direct interactions of LPA2 with Albino3 (Alb3), which is involved in thylakoid membrane biogenesis and cell division, were also detected. Thus, the results suggest that LPA2, which appears to form a complex with Alb3, is involved in assisting CP43 assembly within PSII.  相似文献   

5.
Alpha-synuclein (alphaS) is an abundant neuronal protein that accumulates in insoluble inclusions in Parkinson's disease (PD) and the related disorder, dementia with Lewy bodies (DLB). A central question about the role of alphaS in the pathogenesis of PD and DLB concerns how this normally soluble protein assembles into insoluble aggregates associated with neuronal dysfunction. We recently detected highly soluble oligomers of alphaS in normal brain supernatants and observed their augmentation in PD and DLB brains. Further, we found that polyunsaturated fatty acids (PUFAs) enhanced alphaS oligomerization in intact mesencephalic neuronal cells. We now report the presence of elevated PUFA levels in PD and DLB brain soluble fractions. Higher PUFA levels were also detected in the supernatants and high-speed membrane fractions of neuronal cells over-expressing wild-type or PD-causing mutant alphaS. This increased PUFA content in the membrane fraction was accompanied by increased membrane fluidity in the alphaS overexpressing neurons. In accord, membrane fluidity and the levels of certain PUFAs were decreased in the brains of mice genetically deleted of alphaS. Together with our earlier observations, these results suggest that alphaS-PUFA interactions help regulate neuronal PUFA levels as well as the oligomerization state of alphaS, both normally and in human synucleinopathies.  相似文献   

6.
7.
Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacity to form dendrites and synapses in culture. At the biochemical level, CC2D1A transduces signals to the cyclic adenosine 3',5'-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation.  相似文献   

8.
9.
We have searched for brain-specific extracellular molecules using a library of monoclonal antibodies against surface antigens of differentiated PC12h cells. One of the monoclonal antibodies, PCH42-14, recognized a 27/26-kDa protein of 10-week-old rat brain on immunoblotting. PCH42-14 antigen was detected only in brain, especially in cerebrum, olfactory bulb, mesencephalon, hippocampus, medulla oblongata, and spinal cord. On hippocampal neuron culture, PCH42-14 antigen existed extracellularly along with the neuronal extensions.  相似文献   

10.
Effects of neonatal hypothyroidism on rat brain gene expression.   总被引:15,自引:0,他引:15  
To define at the molecular biological level the effects of thyroid hormone on brain development we have examined cDNA clones of brain mRNAs and identified several whose expression is altered in hypothyroid animals during the neonatal period. Clones were identified with probes prepared by subtractive or differential hybridization, and those corresponding to mRNAs altered in hypothyroidism were further studied by Northern blot analysis. Using RNA prepared from whole brains, no effect of hypothyroidism was found on the expression of the astroglial gene coding for glial fibrillary acidic protein. Among genes of neuronal expression, no significant alterations were found in the steady state levels of mRNAs coding for neuron-specific enolase, microtubule-associated protein-2, Tau, or nerve growth factor. N-CAM mRNA increased slightly in hypothyroid brains. In contrast a 2- to 3-fold decrease was found in the mRNA coding for a novel neuronal gene, RC3. This is the first neuronal gene known to be significantly altered at the mRNA level by thyroid hormone deprivation. The abundance of the mRNAs for the major myelin proteins proteolipid protein, myelin basic protein, and myelin-associated glycoprotein, expressed by oligodendrocytes, were also decreased in hypothyroid brains. Developmental studies on RC3 and myelin-associated glycoprotein expression indicated that the corresponding mRNAs accumulate in the brain of normal rats during the first 15-20 days of neonatal life. A similar accumulation occurred in hypothyroid brains, but at much reduced levels. The results demonstrate that thyroid hormone controls the steady state levels of particular mRNAs during brain development.  相似文献   

11.
Structural information defining an N-terminal sequence required for the membrane sorting of bacterial lipoproteins has been previously garnered through the study of a hybrid outer membrane (OM) lipo-beta-lactamase (LL) (Ghrayeb and Inouye (1984) J. Biol. Chem. 259, 463-467). Introduction of an aspartate as the second residue of mature LL (D2 mutant) causes an inner membrane (IM) localization of this protein (Yamaguchi, K., Yu, F., and Inouye, M. (1988) Cell 53, 423-432). Introduction of as aspartate at the third residue of mature LL (D3) causes a weaker IM sorting signal and when present as the fourth residue (D4), normal OM sorting occurs. A positively charged residue at the second position (K2) has no effect on OM localization. Remarkably, glutamate substitution at either the second (E2) or third (E3) position does not interfere with OM sorting. Sorting of the mutant D2 LL can be partially suppressed by introduction of a positively charged histidine (D2H3) or lysine (D2K3) at residue 3 of the mature protein. These results indicate that both the negative charge of the aspartate residue and some structural feature not present in a glutamate residue are required for sorting to the IM. The suppression of IM localization of the D2H3 LL double mutant can be eliminated by growing Escherichia coli at pH 8.4 to reduce the histidine partial positive charge. This result supports the essentiality of a negative charge in IM localization and indicates that the committed step in lipoprotein sorting is made in a cellular compartment, the periplasm, at equilibrium with the external pH.  相似文献   

12.
We raised monoclonal antibodies against senile plaque (SP) amyloid and obtained a clone 9D2, which labeled amyloid fibrils in SPs and reacted with approximately 50/100 kDa polypeptides in Alzheimer's disease (AD) brains. We purified the 9D2 antigens and cloned a cDNA encoding its precursor, which was a novel type II transmembrane protein specifically expressed in neurons. This precursor harbored three collagen-like Gly-X-Y repeat motifs and was partially homologous to collagen type XIII. Thus, we named the 9D2 antigen as CLAC (collagen-like Alzheimer amyloid plaque component), and its precursor as CLAC-P/collagen type XXV. The extracellular domain of CLAC-P/collagen type XXV was secreted by furin convertase, and the N-terminus of CLAC deposited in AD brains was pyroglutamate modified. Both secreted and membrane-tethered forms of CLAC-P/collagen type XXV specifically bound to fibrillized Abeta, implicating these proteins in beta-amyloidogenesis and neuronal degeneration in AD.  相似文献   

13.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are essential for vesicle docking and fusion. SNAP-25, syntaxin 1A, and synaptobrevin/vesicle-associated membrane protein (VAMP) are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. It has been proposed that interactions of SNAP-25 with syntaxin 1A are required for initial membrane attachment of SNAP-25 (Vogel, K., Cabaniols, J.-P., and Roche, P. (2000) J. Biol. Chem. 275, 2959-2965). However, we have shown previously that residues 85-120 of the SNAP-25 interhelical domain, which do not interact with syntaxin, are necessary and sufficient for palmitoylation and plasma membrane localization of a green fluorescent protein reporter molecule (Gonzalo, S., Greentree, W. K., and Linder, M. E. (1999) J. Biol. Chem. 274, 21313-21318). To clarify the role of syntaxin in membrane targeting of SNAP-25, we studied a SNAP-25 point mutant (G43D) that does not interact with syntaxin. SNAP-25 G43D/green fluorescent protein was palmitoylated and localized at the plasma membrane. Newly synthesized SNAP-25 G43D had the same kinetics of membrane association as the wild-type protein. Furthermore, expression of a cytosolic mutant syntaxin 1A did not interfere with SNAP-25 membrane interactions or palmitoylation in the neuronal cell line NG108-15. Exogenously expressed SNAP-25 targets efficiently to the plasma membrane in cells of neuronal origin but only partially in HeLa cells, a neurosecretion-incompetent line. This phenotype was not rescued when syntaxin 1A was co-expressed with SNAP-25. Our data support a syntaxin-independent mechanism of membrane targeting for SNAP-25.  相似文献   

14.
3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation.  相似文献   

15.
The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as brain-derived neurotrophic factor (BDNF). We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GTPase-activating protein neuron-associated developmentally regulated protein (NADRIN), and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.  相似文献   

16.
Abstract— Human brain-specific alpha2-glycoprotein was purified by means of Sepharose immunoadsorbents. A further brain-specific protein was found by this method. This component appears to be present in brain in low concentrations only and has been enriched by affinity chromatography. Glial cells of human brain were separated from neurons by a density centrifugation method and four fractions were obtained: neuropil, neuronal perikarya, nuclei and debris. Each fraction was checked by light and phase contrast microscopy to estimate the intactness of the cells and any contamination by other fractions, and also immunologically for determination of brain-specific alpha2-glyco-protein. The results indicate that localization of this brain-specific protein is in the cyto-plasm of the glial cells. The results are discussed in terms of a possible role of this protein in the inflammatory response and in some demyelinating diseases.  相似文献   

17.
Immunoblotting showed that a monoclonal antibody, 3A10, binds to a series of rat brain-specific antigens with molecular masses of 150-, 120-, 118-, 106-, 104-, 79-, and 77-kDa. The expression of 3A10 antigens is dependent on the developmental stage of the brain; only the 106-kDa antigen is detected during embryonic stages of rat brain development, while the expression of the remaining 6 antigens starts after birth and reaches a maximum during postnatal days 15-21. Detection of the 3A10 antigens in cultured neuronal and glial cells derived from cerebral cortices of rat brain at embryonic day 18 showed that the 77-, 79-, 106-, and 150-kDa antigens are specifically expressed in neuronal cells. The 77-kDa antigen was purified and identified as synapsin I by amino acid sequence analyses of the peptide fragments isolated after Achromobacter protease I treatment. During the isolation of 3A10-reactive proteins by immunological screening of cDNA libraries constructed from adult rat brain, we found that all of the 3A10-reactive clones contain nucleotide sequences encoding the unique amino acid sequence TRSP(S, R,G)P. Analyses of 3A10-binding to various synthetic peptides showed that the monoclonal antibody recognizes a specific conformational structure formed by either the TRSPXP sequence or similar amino acid sequences that are expressed on a series of developmentally expressed brain proteins.  相似文献   

18.
The synthesis of lipids and their assembly into subcellular membrane fractions of the myelin deficient Quaking mutant and control brains was studied in 18-, 24- and 41-day-old animals using a double label methodology with14C and 3H acetate as precursors. As a general procedure, Quaking mutants were injected intracranially with 50 μCi [14C]acetate and their littermate controls with 300 μCi [3H]acetate. The animals were killed 3 h post-injection, their brains were pooled and subcellular fractions prepared from the common homogenate. An 80-90% decrease in the incorporation of acetate into eleven lipids of myelin in the Quaking mutant was found. This occurred in the face of apparent normal incorporation (relative to microsomes) into lipids of the other main subcellular fractions (nuclear. mitochondrial and synaptosomal) with the exception of decreased incorporation into the myelin-like fraction at 18 and 24 days. Cholesterol and cerebroside were less readily incorporated into Quaking myelin than the other lipids. Although the microsomal synthesis of cholesterol and cerebroside was depressed by about 30% in the Quaking mutant, the incorporation of cholesterol into nuclear, synaptosomal and mitochondrial fractions was unaffected in the mutant. This indicates that sufficient cholesterol is synthesized for the normal assembly of these organelles. In contrast the incorporation of acetate into cholesterol and cerebroside of Quaking myelin was decreased much more than microsomal synthesis. This latter result is consistent with a defect in the process of myclin membrane assembly  相似文献   

19.
The diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) is based on typical clinical findings and is supported by a positive 14-3-3 Western blot of cerebrospinal fluid. However, it is not clear whether 14-3-3 indicates general neuronal damage or is of pathophysiological relevance in CJD. The fact that the 14-3-3 isoform spectrum in cerebrospinal fluid does not correspond to that found in the brain points to a regulated process. To investigate a possible role of 14-3-3 proteins in transmissible spongiform diseases, we generated a 14-3-3gamma-deficient mutant mouse line by using a classical knockout strategy. The anatomy and cage behavior of the mutant mice were normal. Western blot analyses of brain homogenates revealed no changes in the protein expression of other 14-3-3 isoforms (epsilon, beta, zeta, and eta). Proteomic analyses of mouse brains by two-dimensional differential gel electrophoresis showed that several proteins, including growth hormone, 1-Cys peroxiredoxin, CCT-zeta, glucose-6-phosphate isomerase, GRP170 precursor, and alpha-SNAP, were differentially expressed. Mutant and wild-type mice were inoculated either intracerebrally or intraperitoneally with the Rocky Mountain Laboratory strain of scrapie, but no differences were detected in the postinoculation survival rates. These results indicate that 14-3-3gamma is unlikely to play a causal role in CJD and related diseases.  相似文献   

20.
The rate and extent of axoplasmic transport of the brain-specific soluble protein (14-3-2 protein) has been investigated in the avian visual system. 1-day-old chicks were injected monocularly with tritiated proline, Incorporation of the isotope into the 14-3-2 protein synthesized within the retina of the injected eye, as well as the appearance of the labeled protein in the optic lobes was determined at 6 h and 6 days. These time periods were chosen to distinguish between the rapid and slow phases of axophlasmic flowmfollowing preparation of high-speed supernatant fractions, dialysis, chromatography on Sephadex G-150 and immunoprecipitation with specific antiserum, identification of the labeled 14-3-2 protein was carried out by sodium dodecylsulfate-polyacrylamide gel analysis of the radioactive immunoprecipitates; 6 days after isotope administration, approxo% of the 14-3-2 protein synthesized in the chick retina had been transported to the contralateral optic lobe. By contrast, at 6 h no labeled 14-3-2 protein was detectablemthus, transport of this neuronal protein appears to be relatively slow process with little or no rapid component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号