首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied adenine phosphoribosyltransferase (APRT) in the hemolysates from the families of 2,8-dihydroxyadenine urolithiasis associated with partial deficiency of APRT (the Japanese type) and complete deficiency of APRT (the null type). The APRT in the control subjects was found to be heat-stable at the physiological concentration of phosphoribosylpyrophosphate (PRPP), which was close to the value of its Km for PRPP. The APRT in the Japanese type showed 10 times higher Km values for PRPP and needed a comparably increased level of PRPP for stability in vitro. No change in red cell PRPP was found in the Japanese type of APRT deficiency. The content of APRT enzyme protein was decreased in the hemolysates of the Japanese type, probably due to its lability at the level of PRPP present in the cells. The heterozygote of the null type also had labile enzyme molecules at the physiological PRPP concentration.  相似文献   

2.
Five mutations in the adenine phosphoribosyltransferase (APRT) gene have been described in Japanese patients with APRT deficiency. We investigated the APRT gene from three patients with APRT deficiency and two novel mutations, G133D and V84M, were determined.  相似文献   

3.
Summary More than half of the Japanese patients with 2,8-dihydroxyadenine urolithiasis only partially lack adenine phosphoribosyltransferase (APRT), while all the Caucasian patients with the same disease completely lack the enzyme. APRT activities in healthy heterozygotes for the complete APRT deficiencies were at the same levels as the Japanese patients, and simple enzyme assay does not distinguish between these two conditions. We have previously shown, using viable T-cells, that the enzyme was non-functional in the cells from the Japanese patients although they contain considerable APRT activities in the cell extracts. In the present investigations, we devised a rapid method using erythrocytes for the diagnosis of partial APRT deficiencies accompanied by severe impairment in adenine metabolism causing 2,8-dihydroxyadenine lithiasis. Thus, erythrocytes from three different families with 2,8-dihydroxyadenine urolithiasis associated with partial APRT deficiencies incorporated only minimal amounts of radioactive adenine, while normal erythrocytes incorporated significant amounts. These data indicate that severe impairment in adenine metabolism is shown not only in viable T-cells but also in viable erythrocytes. The present procedures provide a rapid method suitable for routine clinical use for the diagnosis of partial APRT deficiencies causing 2,8-dihydroxyadenine lithiasis.  相似文献   

4.
To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.  相似文献   

5.
We have completely sequenced the adenine phosphoribosyltransferase (APRT) gene from each of six patients--five (I-V) from Iceland and one (VI) from Britain. Cases I and II shared a common ancestor six and seven generations ago, and cases I and V shared a common ancestor seven generations ago, but cases III and IV were unrelated to the above or to each other, over seven generations. Genomic DNA was amplified by PCR, subcloned into M13mp18, and sequenced. Genomic and PCR-amplified DNAs were also analyzed by restriction-enzyme digestion and Southern blotting. The same missense mutation was identified in all six patients. This mutation leads to the replacement of asp (GAC) by val (GTC), at amino acid position 65. The gene sequences from all patients were otherwise identical to our wild-type sequence. The homozygous nature of the mutation was confirmed by sequencing the PCR product directly. All six patients were homozygous for the 1.25-kb TaqI RFLP. The Icelandic patients were also homozygous for the 8-kb SphI RFLP, but the British patient was heterozygous at this site. These studies suggest that a founder effect is likely to be responsible for APRT deficiency in the Icelandic population. The finding of the same mutation in a patient from Britain suggests that this mutation may have originated in mainland Europe.  相似文献   

6.
Generally, if mutant and normal proteins have similar molecular weights and electric charges, they cannot easily be distinguished from one another. We have developed a unique method by which a mutant enzyme of adenine phosphoribosyltransferase (APRT) can easily be distinguished from normal enzyme with nearly identical molecular weight and electric charge. DNA sequencing data have suggested that in this special type of disease (Japanese-type APRT deficiency) there is an amino acid substitution from Met to Thr at position 136 of APRT. Since normal APRT has only one Met residue, the Japanese-type mutant APRT should be a methionine-free protein. Using both an amino acid sequence-specific antiserum against APRT, and specific cleavage of peptide at the methionine residue with BrCN, we could distinguish between normal and mutant proteins. Thus, normal but not mutant APRT was cleaved with BrCN, indicating that the mutant APRT is a methionine-free protein. All tested patients with the Japanese-type APRT deficiency were found to synthesize exclusively methionine-free APRT. Usefulness of this method is not restricted to a single family, as 79% of all the patients with this disease among Japanese, and more than half of all the patients with this disease reported in the world, are likely to have this unique mutation. Thus, not only sequence-specific cleavage of DNA with restriction endonucleases but also that of protein with a chemical agent has been shown to be sometimes useful for the diagnosis and analysis of a genetic disease by careful examination of normal and mutant amino acid sequences.  相似文献   

7.
The three-dimensional structure of Leishmania tarentolae adenine phosphoribosyltransferase (APRT) in complex with adenosine-5-monophosphate (AMP) and a phosphate ion has been solved. Refinement against X-ray diffraction data extending to 2.2-Å resolution led to a final crystallographic R factor of 18.3%. Structural comparisons amongst this APRT enzyme and other ‘type I’ PRTases whose structures have been determined reveal several important features of the PRTases catalytic mechanism. Based on structural superpositions and molecular interaction potential calculations, it was possible to suggest that the PRPP is the first substrate to bind, while the AMP is the last product to leave the active site, in accordance to recent kinetic studies performed with the Leishmania donovani APRT.  相似文献   

8.
Summary In order to study the biochemical basis of a complete deficiency of adenine phosphoribosyl transferase (APRT) the enzyme was purified to homogeneity, its properties were characterized, and antibodies raised. The enzyme is indirectly involved in adenine uptake. Apparently, by forming AMP the internal concentration of adenine is kept low allowing its diffusion.The same APRT is present in various tissues as was revealed by antibody inactivations employing anti-erythrocyte APRT as well as by direct enzyme assays in cells from the APRT deficient patient. In vitro cultured fibroblasts derived from this patient had less than 0.02% enzyme activity. No cross-reacting material was found in erythrocytes obtained from an APRT deficient child.  相似文献   

9.
10.
Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.  相似文献   

11.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

12.
Adenine phosphoribosyltransferase (APRT) is a purine metabolic enzyme and a homozygous deficiency in this enzyme causes 2,8-dihydroxyadenine urolithiasis. Various germline abnormalities have been described, but we report here a unique type of germline mutation in a homozygous individual (SY) who had excreted 2,8-dihydroxyadenine crystals. In SY, TCA was substituted for the physiological stop codon TGA. This base substitution generates a new HinfI restriction site, and, using the polymerase chain reaction and subsequent digestion by this enzyme, it was confirmed that SY is homozygous for the base substitution. This base change is unique in that it generates an open reading frame that extends to the poly(A) addition site. The amount of mRNA in transformed B cells from SY was approximately a quarter of that in control subjects and no APRT proteins were detected. In eukaryotes, unlike in prokaryotes, no rescue systems for defective polypeptide termination caused by a missing stop codon have been found. Therefore, the outcome of the defect of SY is unclear from present knowledge about termination of polypeptide synthesis. Investigations into the mechanisms of the absence of protein in the cells of SY may lead to a better understanding of the physiological and nonphysiological termination of polypeptide synthesis in eukaryotic cells. Received: 26 August 1997 / Accepted: 5 November 1997  相似文献   

13.
Complete hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency causes the Lesch-Nyhan syndrome, an X-linked, purine metabolism disorder manifested by hyperuricemia, hyperuricaciduria, and neurologic dysfunction. Partial HPRT deficiency causes hyperuricemia and gout. One requirement for understanding the molecular basis of HPRT deficiency is the determination of which amino acids in this salvage enzyme are necessary for structural or catalytic competence. In this study we have used the PCR coupled with direct sequencing to determine the nucleotide and subsequent amino acid changes in 22 subjects representing 17 unrelated kindreds from the United Kingdom. These mutations were confirmed by using either RNase mapping or Southern analyses. In addition, experiments were done to determine enzyme activity and electrophoretic mobility, and predictive paradigms were used to study the impact of these amino acid substitutions on secondary structure.  相似文献   

14.
Adenine phosphoribosyltransferase (APRT) is the key enzyme that converts adenine to adenosine monophosphate (AMP) in the purine salvage pathway. It was found that several different forms of APRT gene exist in plants, but no APRT gene in maize has been reported up to now. In this study, a novel maize APRT gene was cloned and characterized through a combination of bioinformatic, RT-PCR and RACE strategies. The full length of APRT cDNA sequence is 1202 nucleotides, with an ORF encoding 214 amino acid residues. Alignment of the deduced protein with that of other plant APRT genes indicates that the new gene is the form 2 of maize APRT, thus it was named ZmAPT2. Through basic local alignment search tool, search in the genomic survey sequence database of MaizeGDB, the putative genomic sequence of ZmAPT2 was obtained. Comparison of the cDNA and genomic sequence of the ZmAPT2 gene revealed that it contained seven exons and six introns. The locations of the introns within the maize ZmAPT2 coding region were consistent with those in the previously isolated APRTs of arabidopsis and rice. RT-PCR analysis showed that ZmAPRT was constitutively expressing in different organs under high temperature and salt stresses. Southern blot analysis indicated that at least three APRT genes existed in maize genome. These results confirmed that the novel maize ZmAPT2 gene was truly identified, and its potential role in maize growth and development was discussed.  相似文献   

15.
In a Japanese patient with familial LPL deficiency, a new null allelic mutation, one base pair deletion at nucleotide position 916 was identified in exon 5 of one allele. In exon 3 of the other allele, we found the same nonsense mutation as we described previously in other Japanese kindreds. For the deletional mutant allele, we developed a simple detection method and constructed the DNA haplotype.  相似文献   

16.
Summary HPRTAnn Arbor is a variant of hypoxanthine (guanine) phosphoribosyl-transferase (HPRT: EC 2.4.2.8), which was identified in two brothers with hyperuricemia and nephrolithiasis. In previous studies, this mutant enzyme was characterized by an increased Km for both substrates, a normal Vmax, a decreased intracellular concentration of enzyme protein, a normal subunit molecular weight and an acidic isoelectric point under native isoelectric focusing conditions. We have cloned a full-length cDNA for HPRTAnn Arbor and determined its complete nucleotide sequence. A single nucleotide change (TG) at nucleotide position 396 has been identified. This transversion predicts an amino acid substitution from isoleucine (ATT) to methionine (ATG) in codon 132, which is located within the putative 5-phosphoribosyl-1-pyrophosphate (PRPP)-binding site of HPRT.  相似文献   

17.
Five independent mutations in the hypoxanthine guanine phosphoribosyltransferase (HPRT) gene were identified in a partially HPRT deficient patient with gout and in four Lesch-Nyhan patients. Using the polymerase chain reaction (PCR) technique coupled with direct sequencing, the nucleotide sequences of the entire HPRT coding region amplified from the cDNA and also of each exon amplified form the genomic DNA were analyzed. Three independent point mutations in the coding region were detected in the partially HPRT deficient patient (Case 1) and in two Lesch-Nyhan patients (Case 2 and 3), resulting in single amino acid substitutions. The family study of Case 3, utilizing a PvuII restriction site created in the mutant gene, indicated that the mother was a heterozygote, and a sister and a fetal brother had inherited the normal HPRT gene from the mother. In two other mutants causing Lesch-Nyhan syndrome, a portion of the HPRT gene was deleted, and RNA splicing was missing in both mutants. A 4-bp deletion at the 5 end of exon 4 resulted in formation of three different types of abnormal mRNA (Case 4). The other mutant (Case 5) produced abnormal mRNA including 26bp of intron 8 instead of the deleted 58bp at the 5 end of exon 9, because of a 74-bp deletion from intron 8 to exon 9.  相似文献   

18.
de Wijn R  van Gorkom HJ 《Biochemistry》2001,40(39):11912-11922
The oxidation kinetics of the reduced photosystem II electron acceptor Q(A)(-) was investigated by measurement of the chlorophyll fluorescence yield transients on illumination of dark-adapted spinach chloroplasts by a series of saturating flashes. Q(A)(-) oxidation depends on the occupancy of the "Q(B) binding site", where this reaction reduces plastoquinone to plastoquinol in two successive photoreactions. The intermediate, one-electron-reduced plastosemiquinone anion Q(B)(-) remains tightly bound, and its reduction by Q(A)(-) may proceed with simple first-order kinetics. The next photoreaction, in contrast, may find the Q(B) binding site occupied by a plastoquinone, a plastoquinol, or neither of the two, resulting in heterogeneous Q(A)(-) oxidation kinetics. The assumption of monophasic Q(B)(-) reduction kinetics is shown to allow unambiguous decomposition of the observed multiphasic Q(A)(-) oxidation. At pH 6.5 the time constant for Q(A)(-) oxidation was found to be 0.2-0.4 ms with Q(B) in the site, 0.6-0.8 ms with Q(B)(-) in the site, 2-3 ms when the site is empty and Q(B) has to bind first, and of the order of 0.1 s if the site is temporarily blocked by the presence of Q(B)H(2) or other low-affinity inhibitors such as carbonyl cyanide m-chlorophenylhydrazone (CCCP). Effects of pH and H(2)O/D(2)O exchange were found to be remarkably nonspecific. No influence of the S-states could be demonstrated.  相似文献   

19.
Summary The incidence of allotypes of the genes of the fourth component (C4) and factor B of the complement system was compared in 252 persons under 45 years of fage (young group) with 482 people between 61 and 90 years of age (old group). One hundred people older than 90 years of age (nonagenarians) were also investigated. A striking difference was found between the young and old groups in the incidence (16.1% and 5.4%, respectively) of a silent gene of the C4B allele (C4BQ0). This difference was even more marked among young and old men (17.6% vs 3.4%). The incidence of the C4BQ0 allele in women dropped to the level of the men only in the nonagenarian group. The most probable explanation for this finding is that people carrying the C4BQO allele die from as yet unidentified disease(s) in their middle-age. Therefore, male (and to a lesser extent female) carriers of this allele may have a considerably shorter life expectancy than individuals without a silent gene in the C4B locus.  相似文献   

20.
An accurate diagnosis of heterozygotes for autosomal recessive disorders with unknown mutations can be difficult. Using a unique phenomenon occurring in vivo, we designed a method for the diagnosis of heterozygotes for adenine phosphoribosyltransferase (APRT) deficiency which makes way for a qualitative distinction between normal and heterozygous subjects. We cultured peripheral blood mononuclear cells with 2,6-diaminopurine, an APRT-dependent cytotoxin, to search for in vivo mutational cells. Fifteen putative heterozygotes examined were found to possess such mutant cells at rather high frequencies; thus, a false negative diagnosis is unlikely. The analysis of genomic DNA in 82 resistant clones from two of the heterozygotes clarified that 64 (78%) had lost the germinally intact alleles. Thirteen members of APRT-deficient families were examined; eight proved to be heterozygotes. Among 425 individuals from two separate residential areas of Japan, two heterozygotes were found. The authenticity of the heterozygosity was validated by two separate methods for the two heterozygotes; hence, a false positive diagnosis can be ruled out. Our data showed a calculated heterozygote frequency of 0.47% (95% confidence limits; 0.05%-1.7%), a value compatible with that (1.2%) calculated from data concerning the incidence of 2,8-dihydroxyadenine urolithiasis. This novel genetic approach for identifying heterozygotes is now being tested to search for other enzyme deficiencies in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号