首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pressler RT  Strowbridge BW 《Neuron》2006,49(6):889-904
Inhibitory local circuits in the olfactory bulb play a critical role in determining the firing patterns of output neurons. However, little is known about the circuitry in the major plexiform layers of the olfactory bulb that regulate this output. Here we report the first electrophysiological recordings from Blanes cells, large stellate-shaped interneurons located in the granule cell layer. We find that Blanes cells are GABAergic and generate large I(CAN)-mediated afterdepolarizations following bursts of action potentials. Using paired two-photon guided intracellular recordings, we show that Blanes cells have a presumptive axon and monosynaptically inhibit granule cells. Sensory axon stimulation evokes barrages of EPSPs in Blanes cells that trigger long epochs of persistent spiking; this firing mode was reset by hyperpolarizing membrane potential steps. Persistent firing in Blanes cells may represent a novel mechanism for encoding short-term olfactory information through modulation of tonic inhibitory synaptic input onto bulbar neurons.  相似文献   

2.
In recent years the evolution of olfactory bulb periglomerular cells, as well as the function of periglomerular cells in olfactory encoding, has attracted increasing attention. Studies of neural information encoding based on the analysis of simulation and modeling have given rise to electrophysiological models of periglomerular cells, which have an important role in the understanding of the biology of these cells. In this review we provide a brief introduction to the anatomy of the olfactory system and the cell types in the olfactory bulb. We elaborate on the latest progress in the study of the heterogeneity of periglomerular cells based on different classification criteria, such as molecular markers, structure, ion channels and action potentials. Then, we discuss the several existing electrophysiological models of periglomerular cells, and we highlight the problems and defects of these models. Finally, considering our present work, we propose a future direction for electrophysiological investigations of periglomerular cells and for the modeling of periglomerular cells and olfactory information encoding.  相似文献   

3.
Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we demonstrate a highly reproducible, light-dependent activation of neurons and precise control of firing frequency in vivo. To test the feasibility of mapping neural circuits, we exploited the circuitry formed between the olfactory bulb and the piriform cortex in anesthetized mice. In the olfactory bulb, individual mitral cells fired action potentials in response to light, and their firing rate was not influenced by costimulated glomeruli. However, in piriform cortex, the activity of target neurons increased as larger areas of the bulb were illuminated to recruit additional glomeruli. These results support a model of olfactory processing that is dependent upon mitral cell convergence and integration onto cortical cells. More broadly, these findings demonstrate a system for precise manipulation of neural activity in the intact mammalian brain with light and illustrate the use of ChR2 mice in exploring functional connectivity of complex neural circuits in vivo.  相似文献   

4.
In olfactory research,neural oscillations exhibit excellent temporal regularity,which are functional and necessary at the physiological and cognitive levels.In this paper,we employed a bionic tissue biosensor which treats intact epithelium as sensing element to record the olfactory oscillations extracellularly.After being stimulated by odorant of butanedione,the olfactory receptor neurons generated different kinds of oscillations,which can be described as pulse firing oscillation,transient firing oscillation,superposed firing oscillation,and sustained firing oscillation,according to their temporal appearances respectively.With a time-frequency analysis of sonogram,the oscillations also demonstrated different frequency properties,such as δ,θ,α,β and γ oscillations.The results suggest that the bionic biosensor cooperated with sonogram analysis can well improve the investigation of olfactory oscillations,and provide a novel model for artificial olfaction sensor design.  相似文献   

5.
Detection and interpretation of olfactory cues are critical for the survival of many organisms. Remarkably, species across phyla have strikingly similar olfactory systems suggesting that the biological approach to chemical sensing has been optimized over evolutionary time1. In the insect olfactory system, odorants are transduced by olfactory receptor neurons (ORN) in the antenna, which convert chemical stimuli into trains of action potentials. Sensory input from the ORNs is then relayed to the antennal lobe (AL; a structure analogous to the vertebrate olfactory bulb). In the AL, neural representations for odors take the form of spatiotemporal firing patterns distributed across ensembles of principal neurons (PNs; also referred to as projection neurons)2,3. The AL output is subsequently processed by Kenyon cells (KCs) in the downstream mushroom body (MB), a structure associated with olfactory memory and learning4,5. Here, we present electrophysiological recording techniques to monitor odor-evoked neural responses in these olfactory circuits.First, we present a single sensillum recording method to study odor-evoked responses at the level of populations of ORNs6,7. We discuss the use of saline filled sharpened glass pipettes as electrodes to extracellularly monitor ORN responses. Next, we present a method to extracellularly monitor PN responses using a commercial 16-channel electrode3. A similar approach using a custom-made 8-channel twisted wire tetrode is demonstrated for Kenyon cell recordings8. We provide details of our experimental setup and present representative recording traces for each of these techniques.  相似文献   

6.
An olfactory neuronal network for vapor recognition in an artificial nose   总被引:4,自引:0,他引:4  
Odorant sensitivity and discrimination in the olfactory system appear to involve extensive neural processing of the primary sensory inputs from the olfactory epithelium. To test formally the functional consequences of such processing, we implemented in an artificial chemosensing system a new analytical approach that is based directly on neural circuits of the vertebrate olfactory system. An array of fiber-optic chemosensors, constructed with response properties similar to those of olfactory sensory neurons, provide time-varying inputs to a computer simulation of the olfactory bulb (OB). The OB simulation produces spatiotemporal patterns of neuronal firing that vary with vapor type. These patterns are then recognized by a delay line neural network (DLNN). In the final output of these two processing steps, vapor identity is encoded by the spatial patterning of activity across units in the DLNN, and vapor intensity is encoded by response latency. The OB-DLNN combination thus separates identity and intensity information into two distinct codes carried by the same output units, enabling discrimination among organic vapors over a range of input signal intensities. In addition to providing a well-defined system for investigating olfactory information processing, this biologically based neuronal network performs better than standard feed-forward neural networks in discriminating vapors when small amounts of training data are used. Received: 30 June 1997 / Accepted in revised form: 12 January 1998  相似文献   

7.
Associative cortex features in the first olfactory brain relay station   总被引:1,自引:0,他引:1  
Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as?mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron.  相似文献   

8.
In order to study the problem how the olfactory neural system processes the odorant molecular information for constructing the olfactory image of each object, we present a dynamic model of the olfactory bulb constructed on the basis of well-established experimental and theoretical results. The information relevant to a single odor, i.e. its constituent odorant molecules and their mixing ratios, are encoded into a spatio-temporal pattern of neural activity in the olfactory bulb, where the activity pattern corresponds to a limit cycle attractor in the mitral cell network. The spatio-temporal pattern consists of a temporal sequence of spatial firing patterns: each constituent molecule is encoded into a single spatial pattern, and the order of magnitude of the mixing ratio is encoded into the temporal sequence. The formation of a limit cycle attractor under the application of a novel odor is carried out based on the intensity-to-time-delay encoding scheme. The dynamic state of the olfactory bulb, which has learned many odors, becomes a randomly itinerant state in which the current firing state of the bulb itinerates randomly among limit cycle attractors corresponding to the learned odors. The recognition of an odor is generated by the dynamic transition in the network from the randomly itinerant state to a limit cycle attractor state relevant to the odor, where the transition is induced by the short-term synaptic changes made according to the Hebbian rule under the application of the odor stimulus. Received: 28 July 1997 / Accepted in revised form: 6 May 1998  相似文献   

9.
We propose a neural mechanism for discrimination of different complex odors in the olfactory cortex based on the dynamical encoding scheme. Both constituent molecules of the odor and their mixing ratios are encoded simultaneously into a spatiotemporal activity pattern (limit cycle attractor) in the olfactory bulb [Hoshino O, Kashimori Y, Kambara T (1998) Biol Cybern 79:109–120]. We present a functional model of the olfactory cortex consisting of some dynamical mapping modules. Each dynamical map is represented by itinerancy among the limit cycle attractors. When a temporal sequence of spatial activity patterns corresponding to a complex odor is injected from the bulb to the network of the olfactory cortex, the neural activity state of each mapping module is fixed to a relevant spatial pattern injected. Recognition of an odor is accomplished by a combination of firing patterns fixed in all the mapping modules. The stronger the response strength of the component, the earlier the component is recognized. The hierarchical discrimination of an odor is made by recognizing the components in order of decreasing response strengths. Received: 28 November 1998 / Accepted in revised form: 17 December 1999  相似文献   

10.
Price  Steven 《Chemical senses》1984,8(4):341-354
It is widely believed that the mechanism by which olfactoryneurons are stimulated by odorants is via specific receptorproteins located on or in the apical cell membranes of the neurons.In this review alternative mechanisms are explored and a modelis presented in which sensitivity and specificity can be accountedfor by the general irritability of cells to chemicals. The premiseson which the model is based are: (i) Groups of olfactory nerves fire action potentials whichare summated at the first synapse, in the olfactory bulb. Theseneurons fire spontaneously because their resting potentialsare unstable. (ii) What we call olfactory quality is encoded in patterns offiring of different olfactory neurons. (iii) Olfactory neurons are not identical. The sources of theirindividuality include differences in their age, spatial locationin the plane of the tissue, depth within the tissue and distancefrom the nearest capillary. The heterogeneity will be reflectedas differences in their metabolism and chemical composition. (iv) Most of the surface area of olfactory neurons is bathedin mucus that is secreted by Bowman's glands and sustentacularcells. Therefore, the resting potential and firing frequencyof each will depend upon the composition of the mucus. It follows from these premises that alterations in the mucuscomposition, extracellular fluid composition, metabolic stateor properties of neuronal membranes will alter the resting potentialand, therefore, the firing frequency of each neuron. The effectswill vary among neurons because of their individuality evenif the stimulus is distributed uniformly across the olfactorymucosa, different regions will be exposed to different patternsof stimulus concentration because odorants are differentiallyadsorbed and metabolized. According to this scheme qualitativelydifferent patterns of neural activity will result from differentodorants, the firing of some neurons being inhibited and thatof others being stimulated in each case. This will be true independentlyof the existence of specific receptor proteins, the effectsof which must be superimposed upon the general effects of nonspecificirritability.  相似文献   

11.
Davison IG  Ehlers MD 《Neuron》2011,70(1):82-94
Odors are initially encoded in the brain as a set of distinct physicochemical characteristics but are ultimately perceived as a unified sensory object--a "smell." It remains unclear how chemical features encoded by diverse odorant receptors and segregated glomeruli in the main olfactory bulb (MOB) are assembled into integrated cortical representations. Combining patterned optical microstimulation of MOB with in vivo electrophysiological recordings in anterior piriform cortex (PCx), we assessed how cortical neurons decode complex activity patterns distributed across MOB glomeruli. PCx firing was insensitive to single-glomerulus photostimulation. Instead, individual cells reported higher-order combinations of coactive glomeruli resembling odor-evoked sensory maps. Intracellular recordings revealed a corresponding circuit architecture providing each cortical neuron with weak synaptic input from a distinct subpopulation of MOB glomeruli. PCx neurons thus detect specific glomerular ensembles, providing an explicit neural representation of chemical feature combinations that are the hallmark of complex odor stimuli.  相似文献   

12.
13.
Mitral and tufted cells are the 2 types of output neurons of the main olfactory bulb. They are located in distinct layers, have distinct projection patterns of their dendrites and axons, and likely have distinct relationships with the intrabulbar inhibitory circuits. They could thus be functionally distinct and process different aspects of olfactory information. To examine this possibility, we compared the odor-evoked responses of identified single units recorded in the mitral cell layer (MCL units), in the core of the external plexiform layer (not at the glomerular border tufted cells), or at the glomerular border of this layer (GB tufted cells) of the entire olfactory bulb. Differences between mitral and tufted cells were observed only when subtle aspects of the responses were explored, such as the firing rate per respiratory cycle or the distribution of firing activity along the respiratory cycle. By contrast, more clear differences were found when the 2 subtypes of tufted cells were examined separately. GB units were significantly more responsive, had significantly higher firing activity, and showed greater activity at the transition between inspiration and expiration. The projection-type tufted cells situated closer to the entrance of the olfactory bulb may thus form a distinct physiological class of output neurons and differ from mitral cells and other tufted cells in the manner of processing olfactory information.  相似文献   

14.
Emergence of synchronous oscillatory activity is an inherent feature of the olfactory systems of insects, mollusks and mammals. A class of simple computational models of the mammalian olfactory system consisting of olfactory bulb and olfactory cortex is constructed to explore possible roles of the related neural circuitry in olfactory information processing via synchronous oscillations. In the models, the bulbar neural circuitry is represented by a chain of oscillators and that of cortex is analogous to an associative memory network with horizontal synaptic connections. The models incorporate the backprojection from cortical units to the bulbar oscillators in particular ways. They exhibit rapid and robust synchronous oscillations in the presence of odorant stimuli, while they show either nonoscillatory states or propagating waves in the absence of stimuli, depending on the values of model parameters. In both models, the backprojection is shown to enhance the establishment of large-scale synchrony. The results suggest that the modulation of neural activity through centrifugal inputs may play an important role at the early stage of cortical information processing.  相似文献   

15.
The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb – the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells – are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures.  相似文献   

16.
Local neurons play key roles in the mammalian olfactory bulb   总被引:1,自引:0,他引:1  
Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in understanding the general neural mechanisms involved in both sensory perception and memory. Due to space constraints, this review focuses exclusively on the olfactory systems of vertebrates and primarily those of mammals.  相似文献   

17.
Patterned neural activity helps to establish neuronal connectivity, produce coding of sensory information, and shape synaptic strengths. Here we demonstrate that normal olfactory bulb development might rely on spatial and temporal patterns of afferent neural activity. Neonatal naris occlusion profoundly impacts the development of the ipsilateral olfactory bulb, including reduced bulb volume, decreased protein synthesis, and increased cell death. Relatively few morphologic changes occur if closure is performed postweaning. We examined the immediate electrophysiological consequences of occlusion across this developmentally sensitive period by recording spontaneous and odor-driven mitral/tufted cell responses while the naris was open, closed, and then reopened. In 1-week-old animals, occlusion severely attenuated spontaneous activity, and presentation of the broad-spectrum odorant amyl acetate failed to evoke responses. In 2- and 4-week old rats, spontaneous activity was also reduced by naris closure. However, some cells remained responsive to concentrated odors, even in animals with transected anterior commissures, suggesting passage of odors across the septal window or retronasal pathways. In all age groups, cellular activity became uncoupled from the respiratory cycle. Approximately 47% (18 of 38) of the mitral/tufted cells exhibited activity that was correlated with respiration in the open-naris state, while only 5% (2 of 38) were coupled during naris closure. These data (a) indicate that naris closure reduces both spontaneous and odor-evoked responses, and (b) provide an electrophysiological correlate to a sensitive period in bulb development. The loss of respiration-related synchrony and the reduced activity of mitral/tufted cells may synergistically contribute to the divers consequences of naris closure on bulb development. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 374–386, 1997  相似文献   

18.
Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.  相似文献   

19.
The early processing of sensory information by neuronal circuits often includes a reshaping of activity patterns that may facilitate further processing in the brain. For instance, in the olfactory system the activity patterns that related odors evoke at the input of the olfactory bulb can be highly similar. Nevertheless, the corresponding activity patterns of the mitral cells, which represent the output of the olfactory bulb, can differ significantly from each other due to strong inhibition by granule cells and peri-glomerular cells. Motivated by these results we study simple adaptive inhibitory networks that aim to separate or even orthogonalize activity patterns representing similar stimuli. Since the animal experiences the different stimuli at different times it is difficult for the network to learn the connectivity based on their similarity; biologically it is more plausible that learning is driven by simultaneous correlations between the input channels. We investigate the connection between pattern orthogonalization and channel decorrelation and demonstrate that networks can achieve effective pattern orthogonalization through channel decorrelation if they simultaneously equalize their output levels. In feedforward networks biophysically plausible learning mechanisms fail, however, for even moderately similar input patterns. Recurrent networks do not have that limitation; they can orthogonalize the representations of highly similar input patterns. Even when they are optimized for linear neuronal dynamics they perform very well when the dynamics are nonlinear. These results provide insights into fundamental features of simplified inhibitory networks that may be relevant for pattern orthogonalization by neuronal circuits in general.  相似文献   

20.
In olfactory biosensors, microelectronic sensor chips combined with biological olfactory cells are a promising platform for odor detection. In our investigation, olfactory epithelium stripped from rat was fixed on the surface of microelectrode arrays (MEAs). Electrophysiological activities of olfactory receptor neurons in intact epithelium were measured in the form of extracellular potentials. Based on multi-channel recording performance of MEA and structural and functional integrality of native olfactory epithelium, the spatiotemporal analysis was carried out to study the extracellular activity pattern of neurons in the tissue. The variation of spatiotemporal patterns corresponding to different odors displayed the signals firing image characteristic intuitionally. It is an effective method in the form of patterns for monitoring the state of tissue both in time and space domain, promoting the platform for olfactory sensing mechanism research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号