首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian cells may undergo permanent growth arrest/senescence when they incur excessive DNA damage. As a key player during DNA damage response (DDR), p53 transactivates an array of target genes that are involved in various cellular processes including the induction of cellular senescence. Chemokine receptor CXCR2 was previously reported to mediate replicative and oncogene‐induced senescence in a DDR and p53‐dependent manner. Here, we report that CXCR2 is upregulated in various types of cells in response to genotoxic or oxidative stress. Unexpectedly, we found that the upregulation of CXCR2 depends on the function of p53. Like other p53 target genes such as p21, CXCR2 is transactivated by p53. We identified a p53‐binding site in the CXCR2 promoter that responds to changes in p53 functional status. Thus, CXCR2 may act downstream of p53. While the senescence‐associated secretory phenotype (SASP) exhibits a kinetics that is distinct from that of CXCR2 expression and does not require p53, it reinforces senescence. We further showed that the cellular senescence caused by CXCR2 upregulation is mediated by p38 activation. Our results thus demonstrate CXCR2 as a critical mediator of cellular senescence downstream of p53 in response to DNA damage.  相似文献   

2.
The major hallmark of cellular senescence is an irreversible cell cycle arrest and thus it is a potent tumor suppressor mechanism. Genotoxic insults, e.g. oxidative stress, are important inducers of the senescent phenotype which is characterized by an accumulation of senescence-associated heterochromatic foci (SAHF) and DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS). Interestingly, senescent cells secrete pro-inflammatory factors and thus the condition has been called the senescence-associated secretory phenotype (SASP). Emerging data has revealed that NF-κB signaling is the major signaling pathway which stimulates the appearance of SASP. It is known that DNA damage provokes NF-κB signaling via a variety of signaling complexes containing NEMO protein, an NF-κB essential modifier, as well as via the activation of signaling pathways of p38MAPK and RIG-1, retinoic acid inducible gene-1. Genomic instability evoked by cellular stress triggers epigenetic changes, e.g. release of HMGB1 proteins which are also potent enhancers of inflammatory responses. Moreover, environmental stress and chronic inflammation can stimulate p38MAPK and ceramide signaling and induce cellular senescence with pro-inflammatory responses. On the other hand, two cyclin-dependent kinase inhibitors, p16INK4a and p14ARF, are effective inhibitors of NF-κB signaling. We will review in detail the signaling pathways which activate NF-κB signaling and trigger SASP in senescent cells.  相似文献   

3.
PRAK is essential for ras-induced senescence and tumor suppression   总被引:1,自引:0,他引:1  
Sun P  Yoshizuka N  New L  Moser BA  Li Y  Liao R  Xie C  Chen J  Deng Q  Yamout M  Dong MQ  Frangou CG  Yates JR  Wright PE  Han J 《Cell》2007,128(2):295-308
Like apoptosis, oncogene-induced senescence is a barrier to tumor development. However, relatively little is known about the signaling pathways mediating the senescence response. p38-regulated/activated protein kinase (PRAK) is a p38 MAPK substrate whose physiological functions are poorly understood. Here we describe a role for PRAK in tumor suppression by demonstrating that PRAK mediates senescence upon activation by p38 in response to oncogenic ras. PRAK deficiency in mice enhances DMBA-induced skin carcinogenesis, coinciding with compromised senescence induction. In primary cells, inactivation of PRAK prevents senescence and promotes oncogenic transformation. Furthermore, we show that PRAK activates p53 by direct phosphorylation. We propose that phosphorylation of p53 by PRAK following activation of p38 MAPK by ras plays an important role in ras-induced senescence and tumor suppression.  相似文献   

4.
Fibroblast growth factors (FGFs) regulate long bone development by affecting the proliferation and differentiation of chondrocytes. FGF treatment inhibits the proliferation of chondrocytes both in vitro and in vivo, but the signaling pathways involved have not been clearly identified. In this report we show that both the MEK-ERK1/2 and p38 MAPK pathways, but not phospholipase C gamma or phosphatidylinositol 3-kinase, play a role in FGF-mediated growth arrest of chondrocytes. Chemical inhibitors of the MEK1/2 or the p38 MAPK pathways applied to rat chondrosarcoma (RCS) chondrocytes significantly prevented FGF-induced growth arrest. The retinoblastoma family members p107 and p130 were previously shown to be essential effectors of FGF-induced growth arrest in chondrocytes. The dephosphorylation of p107, one of the earliest events in RCS growth arrest, was significantly blocked by MEK1/2 inhibitors but not by the p38 MAPK inhibitors, whereas that of p130, which occurs later, was partially prevented both by the MEK and p38 inhibitors. Furthermore, by expressing the nerve growth factor (NGF) receptor, TrkA, and the epidermal growth factor (EGF) receptor, ErbB1, in RCS cells we show that NGF treatment of the transfected cells caused growth inhibition, whereas EGF did not. FGF- and NGF-induced growth inhibition is accompanied by a strong and sustained activation of ERK1/2 and p38 MAPK and a decrease of AKT phosphorylation, whereas EGF induces a much more transient activation of p38 and ERK1/2 and increases AKT phosphorylation. These results indicate that inhibition of chondrocyte proliferation by FGF requires both ERK1/2 and p38 MAPK signaling and also suggest that sustained activation of these pathways is required to achieve growth inhibition.  相似文献   

5.
Experimental evidence indicates that aging leads to accumulation of senescent cells in tissues and they develop a secretory phenotype (also known as SASP, for senescence-associated secretory phenotype) that can contribute to chronic inflammation and diseases. Recent results have showed that markers of senescence in astrocytes from aged brains are increased in brains with Alzheimer’s disease. These studies strongly involved the stress kinase p38MAPK in the regulation of the secretory phenotype of astrocytes, yet the molecular mechanisms underlying the onset of senescence and SASP activation remain unclear. In this work, we propose a discrete logical model for astrocyte senescence determined by the level of DNA damage (reparable or irreparable DNA strand breaks) where the kinase p38MAPK plays a central role in the regulation of senescence and SASP. The model produces four alternative stable states: proliferation, transient cycle arrest, apoptosis and senescence (and SASP) computed from its inputs representing DNA damages. Perturbations of the model were performed through gene gain or loss of functions and compared with results concerning cultures of normal and mutant astrocytes showing agreement in most cases. Moreover, the model allows some predictions that remain to be tested experimentally.  相似文献   

6.
Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16(INK4a) and another cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16(INK4a). Cells induced to senesce by ectopic p16(INK4a) expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16(INK4a) by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16(INK4a) in suppressing the SASP. These findings suggest that p16(INK4a)-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16(INK4a) activation or senescence per se, but rather is a damage response that is separable from the growth arrest.  相似文献   

7.
Aging is a worldwide challenge, and it is accompanied by the accumulation of senescent cells. Cellular senescence is traditionally defined as permanent cell growth arrest and currently includes the senescence-associated secretory phenotype (SASP). There are two main types of cellular senescence, including telomere-dependent replicative senescence and stress-induced premature senescence. The process of cellular senescence is mainly controlled by two effector pathways, namely, the p53-p21 and p16-retinoblastoma protein (pRB) pathways. Vascular smooth muscle cells (VSMCs) are integral parts of arteries and play an important role in vascular structure and function. VSMC senescence may be triggered by many factors, such as angiotensin II, oxidative stress, inflammation, DNA damage, and small molecule compounds. These inducers are able to genetically and epigenetically regulate VSMC senescence. The senescence of VSMCs together with the SASP contributes to chronic vascular inflammation, the loss of arterial function, and the development of age-related diseases. Current evidence suggests that the senescence of VSMCs might be harmful to individual health, whereas its influence on the lifespan is not clear. The purpose of this paper was to review the current knowledge regarding VSMC senescence and its relevance to hypertension, atherosclerosis, and diabetes, as well as the potential mechanisms responsible for VSMC senescence in these age-related diseases.  相似文献   

8.
Cellular senescence is a unique cell fate characterized by stable proliferative arrest and the extensive production and secretion of various inflammatory proteins, a phenomenon known as the senescence‐associated secretory phenotype (SASP). The molecular mechanisms responsible for generating a SASP in response to senescent stimuli remain largely obscure. Here, using unbiased gene expression profiling, we discover that the scavenger receptor CD36 is rapidly upregulated in multiple cell types in response to replicative, oncogenic, and chemical senescent stimuli. Moreover, ectopic CD36 expression in dividing mammalian cells is sufficient to initiate the production of a large subset of the known SASP components via activation of canonical Src–p38–NF‐κB signaling, resulting in the onset of a full senescent state. The secretome is further shown to be ligand‐dependent, as amyloid‐beta (Aβ) is sufficient to drive CD36‐dependent NF‐κB and SASP activation. Finally, loss‐of‐function experiments revealed a strict requirement for CD36 in secretory molecule production during conventional senescence reprogramming. Taken together, these results uncover the Aβ–CD36–NF‐κB signaling axis as an important regulator of the senescent cell fate via induction of the SASP.  相似文献   

9.
The induction of senescence, an irreversible growth arrest, in cancer cells is regarded as a mean to halt tumor progression. The phytoalexin resveratrol (RV) is known to possess a variety of cancer-preventive, -therapeutic, and -chemosensitizing properties. We report here that chronic treatment with RV in a subapoptotic concentration induces senescence-like growth arrest in tumor cells. In contrast to the widely accepted antioxidant property of RV, we demonstrate that one causative stimulus for senescence induction by chronic RV is an increased level of reactive oxygen species (ROS). The ROS formed upon RV exposure include hydrogen peroxide and superoxide and originate largely from mitochondria. Consistently, co-incubation with the antioxidant N-acetyl cysteine interfered with RV-mediated reactivation of the senescence program. Molecular mediators on the way from increased ROS levels to the observed growth arrest include p38 MAPK, p53, and p21. Moreover, we provide evidence that RV-initiated replication stress, apparent by activation of the ataxia telangiectasia-mutated kinase pathway, is associated with increased ROS levels and senescence induction. This is the first report linking cell cycle effects with a pro-oxidant and pro-senescent effect of RV in cancer cells.  相似文献   

10.
The activation of p53 is a guardian mechanism to protect primary cells from malignant transformation; however, the details of the activation of p53 by oncogenic stress are still incomplete. In this report we show that in Gadd45a(-/-) mouse embryo fibroblasts (MEF), overexpression of H-ras activates extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but not p38 kinase, and this correlates with the loss of H-ras-induced cell cycle arrest (premature senescence). Inhibition of p38 mitogen-activated protein kinase (MAPK) activation correlated with the deregulation of p53 activation, and both a p38 MAPK chemical inhibitor and the expression of a dominant-negative p38alpha inhibited p53 activation in the presence of H-ras in wild-type MEF. p38, but not ERK or JNK, was found in a complex with Gadd45 proteins. The region of interaction was mapped to amino acids 71 to 96, and the central portion (amino acids 71 to 124) of Gadd45a was required for p38 MAPK activation in the presence of H-ras. Our results indicate that this Gadd45/p38 pathway plays an important role in preventing oncogene-induced growth at least in part by regulating the p53 tumor suppressor.  相似文献   

11.
Stimulation of the Ras/MAPK cascade can either activate p53 and promote replicative senescence and apoptosis, or degrade p53 and promote cell survival. Here we show that p53 can directly counteract the Ras/MAPK signaling by inactivating ERK2/MAPK. This inactivation is due to a caspase cleavage of the ERK2 protein and contributes to p53-mediated growth arrest. We found that in Ras-transformed cells, growth arrest induced by p53, but not p21(Waf1), is associated with a strong reduction in ERK2 activity, phosphorylation, and protein half-life, and with the appearance of caspase activity. Likewise, DNA damage-induced cell cycle arrest correlates with p53-dependent ERK2 downregulation and caspase activation. Furthermore, caspase inhibitors or expression of a caspase-resistant ERK2 mutant interfere with ERK2 cleavage and restore proliferation in the presence of p53 activation, indicating that caspase-mediated ERK2 degradation contributes to p53-induced growth arrest. These findings strongly point to ERK2 as a novel p53 target in growth suppression.  相似文献   

12.
We have previously shown that CD40 causes strong activation of the c-Jun N-terminal kinase (JNK), the p38 mitogen-activated protein kinases (MAPK) and MAPKAP kinase-2, a downstream target of p38 MAPK. To identify signaling motifs in the CD40 cytoplasmic domain that are responsible for activation of these kinases, we have created a set of 11 chimeric receptors consisting of the extracellular and transmembrane domains of CD8 fused to portions of the murine CD40 cytoplasmic domain. These chimeric receptors were expressed in WEHI-231 B lymphoma cells. We found that amino acids 35-45 of the CD40 cytoplasmic domain constitute an independent signaling motif that is sufficient for activation of the JNK and p38 MAPK pathways, as well as for induction of I kappa B alpha phosphorylation and degradation. Amino acids 35-45 were also sufficient to protect WEHI-231 cells from anti-IgM-induced growth arrest. This is the same region of CD40 required for binding the TNF receptor-associated factor-2 (TRAF2), TRAF3, and TRAF5 adapter proteins. These data support the idea that one or more of these TRAF proteins couple CD40 to the kinase cascades that activate NF-kappa B, JNK, and p38 MAPK.  相似文献   

13.
Yamagiwa Y  Meng F  Patel T 《Life sciences》2006,78(21):2494-2502
BACKGROUND/AIMS: Cellular senescence results in irreversible growth arrest. In malignant cells, senescence is prevented by maintenance of chromosomal length by telomerase activity. Telomerase activity is increased in malignant, but not in normal cholangiocytes. Interleukin-6 (IL-6) is an autocrine promoter of cholangiocarcinoma growth. Our aims were to assess the relationship between IL-6 activated p38 mitogen-activated protein kinase (MAPK) pathways and senescence in malignant cholangiocytes. METHODS: Cell senescence and telomerase activity was assessed in Mz-ChA-1 malignant human cholangiocytes. The effect of inhibitors of p38 MAPK and telomerase activity on cell proliferation was assessed, and the interaction between these inhibitors was quantitated by median effects analysis. RESULTS: Mz-ChA-1 cells rapidly underwent senescence during repeated passaging. IL-6 increased telomerase activity and decreased cellular senescence during repeated passaging. However, basal telomerase activity was increased by inhibition of p38 MAPK. Inhibition of telomerase activity decreased IL-6 induced proliferation and had a synergistic effect with p38 MAPK inhibitors. Thus, IL-6 increases telomerase activity independent of p38 MAPK signaling and maintenance of telomerase activity promotes cholangiocarcinoma growth. CONCLUSION: Enhanced telomerase activity in response to IL-6 stimulation can prevent cellular senescence and thereby contribute to cholangiocarcinoma growth. Inhibition of telomerase activity may therefore be therapeutically useful in biliary tract malignancies.  相似文献   

14.
The mitogen-activated protein kinase cascade operates downstream of Ras to convey cell-surface signals to the nucleus via nuclear translocation of ERK1 and ERK2. We and others have recently demonstrated that activation of ERK1/2 by growth factors is required for proliferation of intestinal epithelial crypt cells. However, it remained to be established whether ERK1/2 activation alone was sufficient to trigger intestinal epithelial cell (IEC) proliferation. To this aim, retrovirus encoding the hemagglutinin-tagged MAPK/ERK kinase (MEK)1 wild type (wtMEK), the upstream activator of ERK1/2, or a constitutively active mutant of MEK1 (MEK1-S218D/S222D; caMEK) were used to infect nonimmortalized human normal intestinal epithelial crypt cell cultures [human intestinal epithelial cells (HIEC)] and rodent immortalized intestinal crypt cells (IEC-6). Stable expression of caMEK but not wtMEK in HIEC led to the irreversible arrest of cellular proliferation (premature senescence). Concomitant with the onset of cell-cycle arrest was the induction of the cyclin-dependent kinase inhibitors p21(Cip), p53, and p16(INK4A). By contrast, overexpression of caMEK in IEC-6 cells induced growth factor relaxation for DNA synthesis, promoted morphological transformation and growth in soft agar, and did not affect expression of p21(Cip), p53, and p16(INK4A). We provided evidences that ERK1b, an alternatively spliced isoform of ERK1, is activated and may contribute to the deregulation of contact inhibition cell growth and transformation of these cells. Constitutive activation of MEK in IECs can produce either premature senescence or forced mitogenesis depending on the integrity of a senescence program controlled by the cell cycle inhibitors p53, p16(INK4A), and p21(CIP).  相似文献   

15.
Changes in intracellular redox status are crucial events that trigger downstream proliferation or death responses through activation of specific signaling pathways. Moreover, cell responses to oxidative challenge may depend on the pattern of redox-sensitive molecular factors. The stress-activated protein kinases c-Jun-N-terminal kinase (JNK) and p38 MAP kinase (p38MAPK) are implicated in different forms of apoptotic neuronal cell death. Here, we investigated the effects, on neuroblastoma cells, of the prooxidant molecule GSSG, which we previously demonstrated to be an efficient proapoptotic compound able to activate the p38MAPK death pathway in promonocytic cells. We found that neuroblastoma cells are not prone to GSSG-induced apoptosis, although the treatment slightly induced growth arrest through the accumulation of p53 and its downstream target gene, p21. However, GSSG treatment became cytotoxic when cells were previously depleted of intracellular GSH content. Under this condition, apoptosis was triggered by an increased production of superoxide that led to a specific activation of the JNK-dependent pathway. The involvement of superoxide and JNK was demonstrated by cell death inhibition in experiments carried out in the presence of Cu,Zn superoxide dismutase or with specific inhibitors of JNK activity. Our data give support to the studies that indicate preferential requirements for the involvement of stress-activated kinases in apoptotic neuronal cells.  相似文献   

16.
17.
Human endometrium-derived mesenchymal stem cells (hMESC) under the sublethal oxidative stress induced by H2O2 activate both the p53/p21/Rb and p38/MAPKAPK-2 pathways that are responsible for the induction of hMESC premature senescence (Borodkina et al., 2014). However, the interrelations between the p53/p21/Rb and MAPK signaling pathways, including ERK1/2, p38, and JNK, remain yet unexplored. Here, we used the specific inhibitors—pifithrin-α (PFT), U0126, SB203580, and SP600125 to “switch off” one of the proteins in these cascades and to evaluate the functional status alterations of the rest of the proteins. Each MAPK suppression significantly increased the p53 phosphorylation level, as well as p21 protein expression followed by Rb hypophosphorylation. On the other hand, PFT-induced p53 inhibition enhanced mostly the ERK1/2 activation rather than p38 and JNK. These results suggest the existence of a reciprocal negative regulation between p53- and MAPK-dependent signaling pathways. By analyzing the possible interactions among the members of the MAPK family, we showed that p38 and JNK can function as ERK antagonists: JNK is able to activate ERK, while p38 may block ERK activation. Together, these results demonstrate the existence of complex links between different signaling cascades in stressed hMESC, implicating ERK, p38, and JNK in regulation of premature senescence via the p53/p21/Rb pathway.  相似文献   

18.
Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12). Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.  相似文献   

19.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

20.
The senescence-associated secretory phenotype (SASP) can promote paracrine invasion while suppressing tumour growth, thus generating complex phenotypic outcomes. Likewise, centrosome amplification can induce proliferation arrest yet also facilitate tumour invasion. However, the eventual fate of cells with centrosome amplification remains elusive. Here, we report that centrosome amplification induces a variant of SASP, which constitutes a pathway activating paracrine invasion. The centrosome amplification-induced SASP is non-canonical as it lacks the archetypal detectable DNA damage and prominent NF-κB activation, but involves Rac activation and production of reactive oxygen species. Consequently, it induces hypoxia-inducible factor 1α and associated genes, including pro-migratory factors such as ANGPTL4. Of note, cellular senescence can either induce tumourigenesis through paracrine signalling or conversely suppress tumourigenesis through p53 induction. By analogy, centrosome amplification-induced SASP may therefore be one reason why extra centrosomes promote malignancy in some experimental models but are neutral in others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号