首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Participants with ankle instability demonstrate more foot inversion during the stance phase of gait than able-bodied subjects. Invertor excitation, coupled with evertor inhibition may contribute to this potentially injurious position. The purpose of this experiment was to examine evertor/invertor muscle activation and foot COP trajectory during walking in participants with functional ankle instability (FI). Twelve subjects were identified with FI and matched to healthy controls. Tibialis anterior (TA) and peroneus longus (PL) electromyography (EMG), as well as COP, were recorded during walking. Functional analyses were used to detect differences between FI and control subjects with respect to normalized EMG and COP trajectory during walking. Relative to matched controls, COP trajectory was more laterally deviated in the FI group from 20% to 90% of the stance phase. TA activation was greater in the FI group from 15% to 30% and 45% to 70% of stance. PL activation was greater in the FI group at initial heel contact and toe off and trended lower from 20% to 40% of stance in the FI group. Altered motor strategies appear to contribute to COP deviations in FI participants and may increase the susceptibility to repeated ankle inversion injury.  相似文献   

2.
This investigation was designed to test the validity and reliability of a new measure of inversion/eversion ankle stiffness on a unique medial/lateral swaying cradle device utilizing a test/retest with comparison to a known standard. Ankle stiffness is essential to maintaining joint stability. Most ankle injuries occur via an inversion mechanism. To date, very little information is available regarding stiffness of the evertor muscles in the prevention of excessive inversion joint rotation. Transient oscillation data representing inversion/eversion stiffness was obtained in a bipedal weight-bearing stance with an upright posture. Using commercially available springs with stiffness of 4.80N/cm the measured value recorded by the cradle was 4.87N/cm. Mean active stiffness values of the ankle were 35.70Nm/cm (SD 9.45). The trial-to-trial reliability ICC (2,1) coefficient was 0.96 with an SEM of 2.05Nm/rad, and the day-to-day reliability ICC (2,k) coefficient was 0.93 and an SEM of 3.00Nm/rad. The results demonstrate that inversion/eversion ankle stiffness measures on this device are a valid, repeatable and consistent measure. This is relevant because the ability to accurately quantify inversion/eversion ankle stiffness will improve our understanding of biomechanical stability and factors that influence it. It will also enable identification of ankle injury risk factors that will lead to more efficient rehabilitation programs and injury prevention strategies.  相似文献   

3.
An episode of ‘giving way’ at the ankle is described as excessive inversion of the rearfoot that does not result in an acute ankle sprain and is a unique feature associated with chronic ankle instability (CAI). Limited data currently exists describing the preparatory movement patterns and those that occur during an episode of ‘giving way. Therefore, this case report describes the movement patterns and the forces generated during an unintentional ‘giving way’ captured while an individual with unilateral CAI was performing a single-leg landing task in a research laboratory. The participant completed five single-leg landing trials for both limbs. 3D lower extremity kinematics and kinetics for the sagittal and frontal plane were extracted from 200 ms before and after initial contact (IC). Relative to the affected and un-affected single-leg landing trials, the ‘giving way’ episode was characterized by an increase in plantarflexion and hip extension moments before and after IC. The plantarflexion deviation dissipated (50 ms post-IC) and was followed by excessive ankle inversion. The ankle began to plantarflex again (150 ms post-IC) and the knee extended (50 ms post-IC) and adducted (100 ms post-IC). As a result, the ankle inversion angle plateaued at 150 ms post-IC. Furthermore, large sagittal plane internal joint moments were observed. In the frontal plane, the ‘giving way’ trial generated a large inversion joint moment which was counteracted by a large internal eversion joint moment. The observed plantarflexion and knee extension and adduction after initial contact likely contributed to preventing the ankle from continuing to invert and avoid an ankle sprain.  相似文献   

4.
The purpose of this study was to investigate whether neuromuscular adaptations at the site of injury or neural adaptation remote to the injury are affected in individuals with chronic ankle instability (CAI). Electromyography data were collected from the peroneus longus (PL) and tibialis anterior during an ankle joint reaction time task in 12 participants with unilateral CAI and 12 healthy control participants. Following an auditory cue, time to onset of muscle activity (pre-motor time) and time from onset of muscle activity to movement (motor time) were measured during rapid ankle eversion and dorsiflexion. Reaction time for ankle eversion on the affected side was significantly slower in the CAI group than the control group, due to significantly slower motor time for the PL. Changes in motor time for the affected PL in participants with CAI may be attributed to a combination of factors associated with local tissue changes.  相似文献   

5.
Mobility of the subtalar joint in the intact ankle complex   总被引:8,自引:0,他引:8  
A previous study by these authors showed that the calcaneus follows a unique path of unresisted coupled motion relative to the tibia during passive flexion and that most of this motion occurred at the ankle level. Subtalar motion in the intact ankle complex was observed only when perturbations from this path were induced by the application of force to the calcaneus. Relative motion of the bones of the ankle complex was tracked by stereophotogrammetry in seven specimens. Anatomical landmarks, reference frames and joint angles were defined by standard techniques. Sequential moments were applied to the calcaneus about the long axis of the tibia. Measured movements at subtalar level demonstrated plantarflexion coupled to supination and internal rotation (inversion) and dorsiflexion coupled to pronation and external rotation (eversion). These movements were resisted and were fully recovered when the external load was removed. Subtalar motion diminished as the ankle approached maximal dorsi- and plantarflexion. Two clearly distinguished mean axes of rotation were observed for inversion and eversion runs. The axes of inversion and eversion of the subtalar complex changed orientation along a preferred and repeatable path. The subtalar joint complex occupied only a single stable position in the unloaded state and with no range of unresisted motion. It is inferred that mobility was possible only by the stretching and lengthening of the ligaments and the indentation of the articular surfaces, requiring the application of loads. The subtalar joint complex behaves like a flexible structure.  相似文献   

6.
Contracture, or loss of range of motion (ROM) of a joint, is a common clinical problem in individuals with spinal cord injury (SCI). In order to measure the possible contribution of changes in muscle length to the loss of ankle ROM, the active force vs. angle curves for the tibialis anterior (TA) and gastrocnemiussoleus (GS) were measured in 20 participants, 10 with SCI, and 10 gender and age matched, neurologically intact (NI) individuals. Electrical stimuli were applied to the TA and GS motor nerves at incremented angles of the entire ROM of the ankle and the resulting ankle and knee torques were measured using a multi-axis load cell. The muscle forces of the TA and GS were calculated from the torque measurements using estimates of their respective moment arms and the resulting forces were plotted against joint angle. The force–angle relation for the GS at the ankle (GSA) was significantly shifted into plantar flexion in SCI subjects, compared to NI controls (t-test, p<0.001). Similar results were obtained based upon the GS knee (GSK) force–angle measurements (p<0.05). Conversely, no significant shift in the force–angle relation was found for the TA (p=0.138). Differences in the passive ROM were consistent with the force–angle changes. The ROM in the dorsiflexion direction was significantly smaller in SCI subjects compared to NI controls (p<0.05) while the plantar flexion ROM was not significantly different (p=0.114). Based upon these results, we concluded that muscle shortening is an important component of contracture in SCI.  相似文献   

7.
The in-vitro, three dimensional kinematic characteristics of the human ankle and subtalar joint were investigated in this study. The main goals of this investigation were: 1) To determine the range of motion of the foot-shank complex and the associated range of motion of the ankle and subtalar joints; 2) To determine the kinematic coupling characteristics of the foot-shank complex, and 3) To identify the relationship between movements at the ankle and subtalar joints and the resulting motion produced between the foot and the shank. The tests were conducted on fifteen fresh amputated lower limbs and consisted of incrementally displacing the foot with respect to the shank while the motion of the articulating bones was measured through a three dimensional position data acquisition system. The kinematic analysis was based on the helical axis parameters describing the incremental displacements between any two of the three articulating bones and on a joint coordinate system used to describe the relative position between the bones. From the results of this investigation it was concluded that: 1) The range of motion of the foot-shank complex in any direction (dorsiflexion/plantarflexion, inversion/eversion and internal rotation/external rotation) is larger than that of either the ankle joint or the subtalar joint.; 2) Large kinematic coupling values are present at the foot-shank complex in inversion/eversion and in internal rotation/external rotation. However, only a slight amount of coupling was observed to occur in dorsiflexion/plantarflexion.; 3) Neither the ankle joint nor the subtalar joint are acting as ideal hinge joints with a fixed axis of rotation.; 4) Motion of the foot-shank complex in any direction is the result of rotations at both the ankle and the subtalar joints. However, the contribution of the ankle joint to dorsiflexion/plantarflexion of the foot-shank complex is larger than that of the subtalar joint and the contribution of the subtalar joint to inversion/eversion is larger than that of the ankle joint.; 5) The ankle and the subtalar joints have an approximately equal contribution to internal rotation/external rotation movements of the foot-shank complex.  相似文献   

8.
In this study, the frontal plane moment arms of tibialis anterior (TA) and the lateral and medial heads of gastrocnemius (LG and MG) were determined using ultrasonography of ten healthy subjects. Analysis of variance was performed to investigate the effects of frontal plane angle, muscle activity, and plantarflexion angle on inversion–eversion moment arm for each muscle. The moment arms of each muscle were found to vary with frontal plane angle (all p<0.001). TA and LG exhibited eversion moment arms when the foot was everted, but MG was found to have a slight inversion moment arm in this position. As the ankle rotated from 0° to 20° inversion, the inversion moment arm of each increased, indicating that the three muscles became increasingly effective inverters. In neutral position, the inverter moment arm of MG was greater than that of LG (p=0.001). Muscle activity had a significant effect on both LG and MG moment arm at all frontal plane positions (all p0.005). These results demonstrate the manner in which frontal plane moment arms of gastrocnemius and TA differ across the frontal plane range of motion in healthy subjects. This method for assessing muscle action in vivo used in this study may prove useful for subject-specific planning of surgical treatments for frontal plane foot and ankle deformities.  相似文献   

9.
Cryotherapy and ankle bracing are often used in conjunction as a treatment for ankle injury. No studies have evaluated the combined effect of these treatments on reflex responses during inversion perturbation. This study examined the combined influence of ankle bracing and joint cooling on peroneus longus (PL) muscle response during ankle inversion. A 2 × 2 RM factorial design guided this study; the independent variables were: ankle brace condition (lace-up brace, control), and treatment (ice, control), and the dependent variables studied were PL stretch reflex latency (ms), and PL stretch reflex amplitude (% of max). Twenty-four healthy participants completed 5 trials of a sudden inversion perturbation to the ankle/foot complex under each ankle brace and cryotherapy treatment condition. No two-way interaction was observed between ankle brace and treatment conditions on PL latency (P = 0.283) and amplitude (P = 0.884). The ankle brace condition did not differ from control on PL latency and amplitude. Cooling the ankle joint did not alter PL latency or amplitude compared to the no-ice treatment. Ankle bracing combined with joint cooling does not have a deleterious effect on dynamic ankle joint stabilization during an inversion perturbation in normal subjects.  相似文献   

10.
Plots were made of multiunit activity versus ankle joint position for receptors in each of the 12 muscles crossing the cat ankle joint, except peroneus tertius, by recording from populations of afferent fibers in muscle nerves. The discharge was measured 15 or 30 sec after terminating the movements that altered the position of the joint. These recordings were dominated by large-spike activity that would be expected to originate mainly from primary spindle endings. Seven of the 12 muscles also cross other joints. Their responses at a given ankle joint position were so altered by changes in the position of the knee or toe joints that they could not reliably signal the position of the ankle joint. As judged from multiunit recording, receptors in each of the five muscles specific to the ankle joint were influenced by more than one axis of ankle joint displacement.

Single-unit recording from dorsal root filaments was used to determine whether primary or secondary spindle receptors in soleus and tibialis anterior could selectively signal one axis of ankle joint rotation. Individual soleus receptors were tested both on the flexion extension axis and with a combined adduction–eversion movement.

For 38 of the 70 soleus receptors examined (54%), firm adduction–eversion produced a level of activity greater than that caused by 10° of flexion, and for 77% the level of activity was greater than that caused by 5° of flexion. For 168 of the 184 tibialis anterior receptors studied (91%), firm abduction inversion produced a level of activity greater than that caused by 10° of extension. Thus few receptors were found that responded exclusively to one axis of rotation.

One way in which the position of the ankle joint could be specified in the face of multiaxial receptor activity is by examining the receptor discharge from more than one muscle. A suggestion for how the nervous system might do this is given in the discussion.  相似文献   

11.
Running is a popular form of recreation, but injuries are common and may be associated with abnormal joint motion. The objective of this study was to determine the effect of three footwear conditions – barefoot (BF), an ultraflexible training shoe (FREE), and a motion control shoe (MC) – on 3D foot and ankle motion. Dynamic, biplane radiographic images were acquired from 12 runners during overground running. 3D rotations of the tibiotalar and subtalar joints were quantified in terms of plantarflexion/dorsiflexion (PF/DF), inversion/eversion (IN/EV) and internal/external rotation (IR/ER). Across the early stance phase (defined as footstrike to heel-off), BF running demonstrated greater tibiotalar joint range of motion for PF/DF (28.2±8.3°) and IR/ER (7.0±1.4°) than the shod conditions (FREE: PF/DF=15.1±5.9°, IR/ER=4.8±2.1°; MC: PF/DF=15.0±6.2°, IR/ER=4.3±0.7°). Also at the tibiotalar joint, BF running resulted in a position significantly more plantarflexed (BF: 2.0±12.5°, FREE: 15.7±12.2°, MC: 16.5±9.3°) and internally rotated (BF: 12.9±4.5°, FREE: 10.7±4.3°, MC: 10.6±3.9°) at footstrike compared to both shod conditions. No differences were detected between the shod conditions at any point in the early stance phase at the tibiotalar joint. The MC condition demonstrated significant differences compared to FREE at several points throughout the early stance phase at the subtalar joint, with the greatest differences seen at 30% in PF/DF (MC −1.4±8.8°: FREE: −0.5±9.0°), IN/EV (MC −8.1±5.7°: FREE −6.3±5.5°) and IR/ER (MC −9.5±5.3°: FREE: −8.7±5.2°). These findings indicate that footwear has subtle effects on joint motion mainly between BF and shod conditions at the tibiotalar joint and between shod conditions at the subtalar joint.  相似文献   

12.
Farm youth often carry loads that are proportionally large and/or heavy, and field measurements have determined that these tasks are equivalent to industrial jobs with high injury risks. The purpose of this study was to determine the effects of age, load amount, and load symmetry on lower extremity joint moments during carrying tasks. Three age groups (8-10 years, 12-14 years, adults), three load amounts (0%, 10%, 20% BW), and three load symmetry levels (unilateral large bucket, unilateral small bucket, bilateral small buckets) were tested. Inverse dynamics was used to determine maximum ankle, knee, and hip joint moments. Ankle dorsiflexion, ankle inversion, ankle eversion, knee adduction, and hip extension moments were significantly higher in 8-10 and 12-14 year olds. Ankle plantar flexion, ankle inversion, knee extension, and hip extension moments were significantly increased at 10% and 20% BW loads. Knee and hip adduction moments were significantly increased at 10% and 20% BW loads when carrying a unilateral large bucket. Of particular concern are increased ankle inversion and eversion moments for children, along with increased knee and hip adduction moments for heavy, asymmetrical carrying tasks. Carrying loads bilaterally instead of unilaterally avoided increases in knee and hip adduction moments with increased load amount.  相似文献   

13.
Joint surface interaction and ligament constraints determine the kinematic characteristics of the ankle and subtalar joints. Joint surface interaction is characterized by joint contact mechanics and by relative joint surface position potentially characterized by distance mapping. While ankle contact mechanics was investigated, limited information is available on joint distance mapping and its changes during motion. The purpose of this study was to use image-based distance mapping to quantify this interaction at the ankle and subtalar joints during tri-planar rotations of the ankle complex. Five cadaveric legs were scanned using Computed Tomography and the images were processed to produce 3D bone models of the tibia, fibula, talus and calcaneus. Each leg was tested on a special linkage through which the ankle complex was loaded in dorsiflexion/plantarflexion, inversion/eversion, and internal/external rotation and the resulting bone movements were recorded. Fiduciary bone markers data and 3D bone models were combined to generate color-coded distance maps for the ankle and subtalar joints. The results were processed focusing on the changes in surface-to-surface distance maps between the extremes of the range of motion and neutral. The results provided detailed insight into the three-dimensional highly coupled nature of these joints showing significant and unique changes in distance mapping from neutral to extremes of the range of motion. The non-invasive nature of the image-based distance mapping technique could result, after proper modifications, in an effective diagnostic and clinical evaluation technique for application such as ligament injuries and quantifying the effect of arthrodesis or total ankle replacement surgery.  相似文献   

14.
The purpose of this study was to test the endurance of the soleus muscle, and to examine the joint position at which it is most active, while simultaneously suppressing the activity of the gastrocnemius. Ten young males performed maximum isometric contraction of the triceps surae for 100 s, and the endurance and plantar flexion torque of this muscle were measured at various angles of the knee and ankle joints. The electromyogram was measured simultaneously and subsequently converted into integrated electromyogram (IEMG) values. With the knee flexed at 130 degrees, the rate of change in IEMG values for the soleus (0.454% x s(-1)) with the ankle in a neutral position was significantly higher than that for the medial and lateral gastrocnemius. Both with the ankle dorsiflexed at 10 degrees and in the neutral position, the rate of change in IEMG for the soleus was significantly higher with the knee flexed at 90 degrees and 130 degrees than with the knee fully extended. With the knee flexed at 90 degrees and 130 degrees, the IEMG activity of the soleus during the initial (5-10 s) and final 5 s tended to be higher than those for the medial and lateral gastrocnemius, regardless of the ankle joint position. We conclude that the position in which the soleus acts most selectively during a sustained maximum isometric contraction of the triceps surae is with the ankle in a neutral position and the knee flexed at 130 degrees.  相似文献   

15.
Understanding in vivo subtalar joint kinematics is important for evaluation of subtalar joint instability, the design of a subtalar prosthesis and for analysing surgical procedures of the ankle and hindfoot. No accurate data are available on the normal range of subtalar joint motion. The purpose of this study was to introduce a method that enables the quantification of the extremes of the range of motion of the subtalar joint in a loaded state using multidetector computed tomography (CT) imaging. In 20 subjects, an external load was applied to a footplate and forced the otherwise unconstrained foot in eight extreme positions. These extreme positions were foot dorsiflexion, plantarflexion, eversion, inversion and four extreme positions in between the before mentioned positions. CT images were acquired in a neutral foot position and each extreme position separately. After bone segmentation and contour matching of the CT data sets, the helical axes were determined for the motion of the calcaneus relative to the talus between four pairs of opposite extreme foot positions. The helical axis was represented in a coordinate system based on the geometric principal axes of the subjects’ talus. The greatest relative motion between the calcaneus and the talus was calculated for foot motion from extreme eversion to extreme inversion (mean rotation about the helical axis of 37.3±5.9°, mean translation of 2.3±1.1 mm). A consistent pattern of range of subtalar joint motion was found for motion of the foot with a considerable eversion and inversion component.  相似文献   

16.
Asymmetric osteoarthritis (OA) is a common type of OA in the ankle joint. OA also influences the muscles surrounding a joint, however, little is known about the muscle activation in asymmetric ankle OA. Therefore, the aim of this study was to characterize the patients’ muscle activation during isometric ankle torque measurements and level walking. Surface electromyography (EMG) was measured of gastrocnemius medialis (GM) and lateralis (GL), soleus (SO), tibialis anterior (TA), and peroneus longus (PL) in 12 healthy subjects and 12 ankle OA patients. To obtain time and frequency components of the EMG power a wavelet transformation was performed. Furthermore, entropy was introduced to characterize the homogeneity of the wavelet patterns.Patients produced lower plantar- and dorsiflexion torques and their TA wavelet spectrum was shifted towards lower frequencies. While walking, the patients’ muscles were active with a lower intensity and over a broader time–frequency region. In contrast to controls and varus OA patients, maximal GM activity of valgus OA patients lagged behind the activity of GL and SO. In both tasks, PL of the valgus patients contained more low frequency power. The results of this study will help to assess whether surgical interventions of ankle OA can reestablish the muscle activation patterns.  相似文献   

17.
Ten male subjects were tested to determine the effects of muscle fatigue upon the activation pattern of the two main ankle extensor muscles, the 'slow-twitch' soleus (SOL) and the relatively 'fast-twitch' medial gastrocnemius (MG), during a fatiguing 60-s trial of hopping to maximal height. The myoelectric signals from SOL and MG were recorded together with the vertical ground reaction force signal and analysed by means of a computer-aided electromyograph (EMG) contour analysis, i.e. two-dimensional frequency distributions were obtained relating the activation patterns of the two synergists. The EMGs were also full-wave rectified and integrated (IEMG) according to three phases of the hopping movement (PRE, pre-activation phase; ECC, eccentric phase; CON, concentric phase). Results indicated that there were significant decreases (P less than 0.01) in the peak ground reaction force, the height of hopping and the mechanical power per unit body weight at the end of the fatiguing contractions. These decreases in mechanical parameters were accompanied by significant (P less than 0.01) decreases in all three phases of MG IEMG while SOL IEMG showed no such significant declines, except in the CON phase. Thus, the decreased mechanical parameters could in large part be accounted for by the substantial and selective decline of the excitation level of the relatively fast-twitch MG muscle. Our data suggest that the centrally mediated pre-activation of the fatiguable MG muscle as well as the MG activation during the eccentric phase, which is largely controlled by supraspinal inputs and stretch-reflex modulation, are most affected by fatigue changes during repeated maximal stretch/shortening cycles of the ankle extensors.  相似文献   

18.
In this study we aimed to determine the reliability of the surface electromyography (EMG) of leg muscles during vertical jumping between two test sessions, held 2 weeks apart. Fifteen females performed three maximal vertical jumps with countermovement. The displacement of the body centre of mass (BCM), duration of propulsion phase (time), range of motion (ROM) and angular velocity of the knee and surface EMG of four leg muscles (rectus femoris, vastus medialis. biceps femoris and gastrocnemius) were recorded during the jumps. All variables were analysed throughout the propulsion and mid-propulsion phases. Intraclass correlation coefficients (ICC) for the rectus femoris, vastus medialis, biceps femoris and gastrocnemius were calculated to be 0.88, 0.70, 0.24 and 0.01, respectively. BCM, ROM and time values all indicated ICC values greater than 0.90, and the mean knee angular velocity was slightly lower, at 0.75. ICCs between displacement of the BCM and integrated EMG (IEMG) of the muscles studied were less than 0.50. The angular velocity of the knee did not correlate well with muscle activity. Factors that may have affected reliability were variations in the position of electrode replacement, skin resistance, cross-talk between muscles and jump mechanics. The results of this study suggest that while kinematic variables are reproducible over successive vertical jumps, the degree of repeatability of an IEMG signal is dependent upon the muscle studied.  相似文献   

19.
Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern.  相似文献   

20.
This study examined the influence of a mechanical perturbation of the ankle joint on obstacle avoidance pattern. A decoupled control between the distal joint and the combined (hip-knee) proximal joints was observed according to the task requirement. In this context, a greater mechanical friction at the ankle should be compensated at this joint (local compensation) or alternatively, by regulating more combined proximal joints (knee and/or hip). The leading limb inter-segmental coordination was evaluated in both no constraint and constraint conditions in calculating ranges of motion (ROM), moments of force and powers (from heel-off to obstacle) at the ankle, knee and hip joints. Electromyographic activities were also analyzed. With the constraint, the dorsiflexor moment and the tibialis anterior activity remained unchanged while both ROM and power bursts (absorbed and generated) decreased. The hip and knee ROM remain invariant. At heel-off the absorption by hip extensors decreased and the forthcoming generation by knee flexors increased in the constraint condition. To quantify the inter-joint coordination, principal component analysis was used and indicated a high level of inter-joint coupling (synergy) that decreased with the constraint (i.e. less inter-joint coupling). At the ankle joint, the results suggest that the central command was the same in both conditions thus, not be adapted. At both the hip and knee joints, a combined joints modulation occurred to overcome additional friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号