首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Heterozygous de novo mutations in SOX2 have been reported in approximately 10–20% of patients with unilateral or bilateral anophthalmia or microphthalmia. An additional phenotype of hypopituitarism, with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, has been reported in patients carrying SOX2 alterations. We report a novel heterozygous mutation in the SOX2 gene in a male affected with congenital bilateral anophthalmia, hypogonadotrophic hypogonadism and growth hormone deficiency. The mutation we describe is a cytosine deletion in position 905 (c905delC) which causes frameshift and an aberrant C-terminal domain. Our report highlights the fact that subjects affected with eye anomalies and harboring SOX2 mutations are at high risk for gonadotropin deficiency, which has important implications for their clinical management.  相似文献   

4.
Microphthalmia/anophthalmia is a clinically heterogeneous disorder of eye formation, ranging from small size of a single eye to complete bilateral absence of ocular tissues. The genetic defect underlying isolated autosomal recessive microphthalmia/anophthalmia is yet unclear. We studied four families (two of Arab origin, one of Bedouin origin, and one of Persian-Jewish origin) with autosomal recessive microphthalmia/anophthalmia and no associated eye anomalies, and one Syrian–Jewish family with associated colobomas. Assuming a founder effect in each of the families, we performed homozygosity mapping using polymorphic markers adjacent to human homologues of genes known to be associated with eye absence in various species, namely EYA1, EYA2, EYA3, SIX4, SIX6, PAX6 and CHX10. No association was found with EYA1, EYA2, EYA3, SIX6 or PAX6. In two families, linkage analysis was consistent with possible association with SIX4, but no mutations were found in the coding region of the gene or its flanking intron sequences. In three of the five families, linkage analysis followed by sequencing demonstrated that affected individuals in each family were homozygous for a different CHX10 aberration: a mutation in the CVC domain and a deletion of the homeobox domain were found in two Arab families, and a mutation in the donor-acceptor site in the first intron in the Syrian-Jewish family. There was phenotypic variation between families having different mutations, but no significant phenotypic variation within each family. It has been previously shown that mutations in a particular nucleotide in CHX10 are associated with an autosomal recessive syndrome of microphthalmia/anophthalmia with iris colobomas and cataracts in two families. We now show that different mutations in other domains of the same gene underlie isolated microphthalmia/anophthalmia.  相似文献   

5.
6.
Cornelia de Lange syndrome (CdLS) is a developmental disorder characterized by limb reduction defects, characteristic facial features and impaired cognitive development. Mutations in the NIPBL gene predominate; however, mutations in other cohesin complex genes have also been implicated, particularly in atypical and mild CdLS cases. Missense mutations and whole gene deletions in RAD21 have been identified in children with growth retardation, minor skeletal anomalies and facial features that overlap findings in individuals with CdLS. We report the first intragenic deletion and frameshift mutations identified in RAD21 in two patients presenting with atypical CdLS. One patient had an in-frame deletion of exon 13, while the second patient had a c.592_593dup frameshift mutation. The first patient presented with developmental delay, hypospadias, inguinal hernia and dysmorphic features while, the second patient presented with developmental delay, characteristic facial features, hirsutism, and hand and feet anomalies, with the first patient being milder than the second. The in-frame deletion mutation was found to be inherited from the mother who had a history of melanoma and other unspecified medical problems.  相似文献   

7.
Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.  相似文献   

8.
Hsp90 selectively modulates phenotype in vertebrate development   总被引:1,自引:0,他引:1       下载免费PDF全文
Compromised heat shock protein 90 (Hsp90) function reveals cryptic phenotypes in flies and plants. These observations were interpreted to suggest that this molecular stress-response chaperone has a capacity to buffer underlying genetic variation. Conversely, the protective role of Hsp90 could account for the variable penetrance or severity of some heritable developmental malformations in vertebrates. Using zebrafish as a model, we defined Hsp90 inhibitor levels that did not induce a heat shock response or perturb phenotype in wild-type strains. Under these conditions the severity of the recessive eye phenotype in sunrise, caused by a pax6b mutation, was increased, while in dreumes, caused by a sufu mutation, it was decreased. In another strain, a previously unobserved spectrum of severe structural eye malformations, reminiscent of anophthalmia, microphthalmia, and nanophthalmia complex in humans, was uncovered by this limited inhibition of Hsp90 function. Inbreeding of offspring from selected unaffected carrier parents led to significantly elevated malformation frequencies and revealed the oligogenic nature of this phenotype. Unlike in Drosophila, Hsp90 inhibition can decrease developmental stability in zebrafish, as indicated by increased asymmetric presentation of anophthalmia, microphthalmia, and nanophthalmia and sunrise phenotypes. Analysis of the sunrise pax6b mutation suggests a molecular mechanism for the buffering of mutations by Hsp90. The zebrafish studies imply that mild perturbation of Hsp90 function at critical developmental stages may underpin the variable penetrance and expressivity of many developmental anomalies where the interaction between genotype and environment plays a major role.  相似文献   

9.
SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.  相似文献   

10.
11.
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.  相似文献   

12.
Developmental ocular malformations, including anophthalmia-microphthalmia (AM), are heterogeneous disorders with frequent sporadic or non-Mendelian inheritance. Recurrent interstitial deletions of 14q22-q23 have been associated with AM, sometimes with poly/syndactyly and hypopituitarism. We identify two further cases of AM (one with associated pituitary anomalies) with a 14q22-q23 deletion. Using a positional candidate gene approach, we analyzed the BMP4 (Bone Morphogenetic Protein-4) gene and identified a frameshift mutation (c.226del2, p.S76fs104X) that segregated with AM, retinal dystrophy, myopia, brain anomalies, and polydactyly in a family and a nonconservative missense mutation (c.278A-->G, p.E93G) in a highly conserved base in another family. MR imaging and tractography in the c.226del2 proband revealed a primary brain developmental disorder affecting thalamostriatal and callosal pathways, also present in the affected grandmother. Using in situ hybridization in human embryos, we demonstrate expression of BMP4 in optic vesicle, developing retina and lens, pituitary region, and digits strongly supporting BMP4 as a causative gene for AM, pituitary, and poly/syndactyly. Because BMP4 interacts with HH signaling genes in animals, we evaluated gene expression in human embryos and demonstrate cotemporal and cospatial expression of BMP4 and HH signaling genes. We also identified four cases, some of whom had retinal dystrophy, with "low-penetrant" mutations in both BMP4 and HH signaling genes: SHH (Sonic Hedgehog) or PTCH1 (Patched). We propose that BMP4 is a major gene for AM and/or retinal dystrophy and brain anomalies and may be a candidate gene for myopia and poly/syndactyly. Our finding of low-penetrant variants in BMP4 and HH signaling partners is suggestive of an interaction between the two pathways in humans.  相似文献   

13.
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly.  相似文献   

14.
Oculodentodigital dysplasia (ODDD) (OMIM #164200) is a rare congenital, autosomal dominant disorder comprising craniofacial, ocular, dental, and digital anomalies. The syndrome is caused byGJA1 mutations. The clinical phenotype of ODDD involves a characteristic dysmorphic facies, ocular findings (microphthalmia, microcornea, glaucoma), syndactyly type III of the hands, phalangeal abnormalities, diffuse skeletal dysplasia, enamel dysplasia, and hypotrichosis. In a Polish child with the clinical symptoms typical of ODDD, we demonstrated a novel missense mutation c.C31T resulting in p.L11F substitution. Our report provides evidence on the importance of this highly conserved amino acid residue for the proper functioning of GJA1 protein.  相似文献   

15.
The role of plasminogen in preventing thrombosis requires activation by tissue plasminogen activator (t-PA) encoded by PLAT. While case–control associations have been pursued for common variants in PLAT, no disease-causing mutations have been reported. We describe a consanguineous family with two children who died shortly after birth due to complications related to severe hydranencephaly and diaphragmatic hernia. A combined exome/autozygome analysis was carried out with informed consent. We identified a homozygous null mutation in PLAT that abrogated t-PA level in patient cells. This is the first reported human knockout mutation of PLAT. The apparent association with hydranencephaly, diaphragmatic hernia and postnatal lethality requires further validation.  相似文献   

16.
We present an infant with diaphragmatic hernia, anophthalmia and cardiac defect evaluated by magnetic resonance imaging (MRI) autopsy. This female infant was born at 39th weeks by vaginal delivery and presented with diaphragmatic hernia, anophthalmia, cardiac defect and died due to respiratory problems at 28th hours of life. MRI autopsy showed internal organ abnormalities including congenital hernia of the left diaphragm, secondary hypoplasia of the left lung, atrial and ventricular septal defect, dilatation of calices of the kidneys, bilateral anophthalmia, hypoplasia of the optic nerves, hyperintensity of pituitary gland possibly due to bleeding and a cyst of the septum pellucidum. This article shows that MRI autopsy is a valuable method for the evaluation of cases with congenital anomalies if autopsy is not possible.  相似文献   

17.
Microphthalmia is an important developmental eye disorder. Although mutations in several genes have been linked to this condition, they only account for a minority of cases. We performed autozygome analysis and exome sequencing on a multiplex consanguineous family in which colobomatous microphthalmia is associated with profound global developmental delay, intractable seizures, and corpus callosum abnormalities, and we identified a homozygous truncating mutation in C12orf57 [c.1A>G; p.Met1?]. In a simplex case with a similar phenotype, we identified compound heterozygosity for the same mutation and another missense mutation [c.152T>A; p.Leu51Gln]. Little is known about C12orf57 but we show that it is expressed in several mouse tissues, including the eye and brain. Our data strongly implicate mutations in C12orf57 in the pathogenesis of a clinically distinct autosomal-recessive syndromic form of colobomatous microphthalmia.  相似文献   

18.
We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.  相似文献   

19.
Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号