首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Despite advances in chemotherapy, radiotherapy and targeted drug development, cancer remains a disease of high morbidity and mortality. The treatment of human cancer patients with chemotherapy has become commonplace and accepted over the past 100 years. In recent years, and with a similar incidence of cancer to people, the use of cancer chemotherapy drugs in veterinary patients such as the dog has also become accepted clinical practice. The poor predictability of tumour responses to cancer chemotherapy drugs in rodent models means that the standard drug development pathway is costly, both in terms of money and time, leading to many drugs failing in Phase I and II clinical trials. This has led to the suggestion that naturally occurring cancers in pet dogs may offer an alternative model system to inform rational drug development in human oncology. In this review, we will explore the species variation in tumour responses to conventional chemotherapy and highlight our understanding of the differences in pharmacodynamics, pharmacokinetics and pharmacogenomics between humans and dogs. Finally, we explore the potential hurdles that need to be overcome to gain the greatest value from comparative oncology studies.  相似文献   

2.
Modeling opportunities in comparative oncology for drug development   总被引:1,自引:0,他引:1  
Successful development of novel cancer drugs depends on well-reasoned scientific drug discovery, rigorous preclinical development, and carefully conceived clinical trials. Failure in any of these steps contributes to poor rates of approval for new drugs to treat cancer. As technological and scientific advances have opened the door to a variety of novel approaches to cancer drug discovery and development, preclinical models that can answer questions about the activity and safety of novel therapies are increasingly necessary. The advance of a drug to clinical trials based on information from preclinical models presupposes that the models convey informative data for future use in human patients with cancer. The study of novel cancer drugs using in vitro models is highly controllable, reproducible, relatively inexpensive, and linked to high throughput. However, these models fail to reproduce many of the complex features of human cancer. Mouse models address some of these limitations but have important biological differences from human cancer. The integration of studies using pet dogs with spontaneously occurring tumors as models in the development path can answer questions not adequately addressed in conventional models and is therefore gaining attention and interest in drug development communities. The study of novel cancer drugs in dogs with naturally occurring tumors allows drug assessment in a cancer that shares many fundamental features with the human cancer condition, and thus provides an opportunity to answer questions that inform the cancer drug development path in ways not possible in more conventional models.  相似文献   

3.
Recent studies cast doubt on the value of traditionally used models as tools for testing therapies for human cancer. Although the standard practice of xenografting tumors into immunocompromised mice generates reproducible tumors, drug testing in these models has low predictive power when compared to the clinical responses in Phase II trials. The use of tumor-bearing genetically engineered mouse models holds promise for improving preclinical testing. These models recapitulate specific molecular pathways in tumor initiation or progression and provide a biological system in which to study the disease process for assessing efficacy of new therapies and proof-of-principle for testing molecularly targeted drugs. In this review, we discuss the advantages and limitations of genetically engineered mice and plausible solutions for adapting these valuable tumors for wider use in preclinical testing by transplantation into na?ve recipients. We also provide examples of comparative molecular analysis of mammary tumors from MMTV-Polyoma Middle-T antigen and MMTV-wnt1 models as tools for finding clinical correlates, validating existing models and guiding the development of new genetically engineered mouse models for cancer.  相似文献   

4.
Stroke is one of the leading causes of death worldwide and the biggest reason for long-term disability. Basic research has formed the modern understanding of stroke pathophysiology, and has revealed important molecular, cellular and systemic mechanisms. However, despite decades of research, most translational stroke trials that aim to introduce basic research findings into clinical treatment strategies – most notably in the field of neuroprotection – have failed. Among other obstacles, poor methodological and statistical standards, negative publication bias, and incomplete preclinical testing have been proposed as ‘translational roadblocks’. In this article, we introduce the models commonly used in preclinical stroke research, discuss some of the causes of failed translational success and review potential remedies. We further introduce the concept of modeling ‘care’ of stroke patients, because current preclinical research models the disorder but does not model care or state-of-the-art clinical testing. Stringent statistical methods and controlled preclinical trials have been suggested to counteract weaknesses in preclinical research. We conclude that preclinical stroke research requires (1) appropriate modeling of the disorder, (2) appropriate modeling of the care of stroke patients and (3) an approach to preclinical testing that is similar to clinical testing, including Phase 3 randomized controlled preclinical trials as necessary additional steps before new therapies enter clinical testing.  相似文献   

5.
Over the past decades, a number of drugs have been withdrawn or have required special labeling due to adverse effects observed post-marketing. Species differences in drug toxicity in preclinical safety tests and the lack of sensitive biomarkers and nonrepresentative patient population in clinical trials are probable reasons for the failures in predicting human drug toxicity. It is proposed that toxicology should evolve from an empirical practice to an investigative discipline. Accurate prediction of human drug toxicity requires resources and time to be spent in clearly defining key toxic pathways and corresponding risk factors, which hopefully, will be compensated by the benefits of a lower percentage of clinical failure due to toxicity and a decreased frequency of market withdrawal due to unacceptable adverse drug effects.  相似文献   

6.
Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial.  相似文献   

7.
Existing drugs have limited efficacy against the rising threat of drug-resistant TB, have significant side effects, and must be given in combinations of four to six drugs for at least 6 months for drug-sensitive TB and up to 24 months for drug-resistant TB. The long treatment duration has led to increased patient noncompliance with therapy. This, in turn, drives the development of additional drug resistance in a spiral that has resulted in some forms of TB being currently untreatable by existing drugs. New antitubercular drugs in development, particularly those with mechanisms of action that are different from existing first- and second-line TB drugs, are anticipated to be effective against both drug-sensitive and drug-resistant TB. SQ109 is a new TB drug candidate with a novel mechanism of action that was safe and well tolerated in Phase I and early Phase II clinical trials. We describe herein the identification, development and characterization of SQ109 as a promising new antitubercular drug.  相似文献   

8.
Clinical studies in human volunteers are an essential part of drug development. These studies are designed to account for possible differences between the effects of pharmaceutical products in preclinical studies and in humans. However, the tragic outcome of the recent Phase 1 clinical trial on TGN1412 casts considerable doubt over the relevance of this traditional drug development paradigm to the testing of therapeutic agents for human use. The role of alternatives to animal testing is considered, and a series of recommendations are made, which could ensure that clinical trials are well informed and based on the most relevant scientific information.  相似文献   

9.
Before a lead compound goes through a clinical trial, preclinical studies utilize two-dimensional (2D) in vitro models and animal models to study the pharmacodynamics and pharmacokinetics of that lead compound. However, these current preclinical studies may not accurately represent the efficacy and safety of a lead compound in humans, as there has been a high failure rate of drugs that enter clinical trials. All of these failures and the associated costs demonstrate a need for more representative models of human organ systems for screening in the preclinical phase of drug development. In this study, we review the recent advances in in vitro modeling including three-dimensional (3D) organoids, 3D microfabrication, and 3D bioprinting for various organs including the heart, kidney, lung, gastrointestinal tract (intestine–gut–stomach), liver, placenta, adipose, retina, bone, and brain as well as multiorgan models. The availability of organ-on-chip models provides a wealth of opportunities to understand the pathogenesis of human diseases and provide a potentially better model to screen a drug, as these models utilize a dynamic 3D environment similar to the human body. Although there are limitations of organ-on-chip models, the emergence of new technologies have refined their capability for translational research as well as precision medicine.  相似文献   

10.
One of the primary objectives of an oncology dose-finding trial for novel therapies, such as molecular-targeted agents and immune-oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low or moderate-grade toxicities than dose-limiting toxicities. Besides, for efficacy, evaluating the overall response and long-term stable disease in solid tumors and considering the difference between complete remission and partial remission in lymphoma are preferable. It is also essential to accelerate early-stage trials to shorten the entire period of drug development. However, it is often challenging to make real-time adaptive decisions due to late-onset outcomes, fast accrual rates, and differences in outcome evaluation periods for efficacy and toxicity. To solve the issues, we propose a time-to-event generalized Bayesian optimal interval design to accelerate dose finding, accounting for efficacy and toxicity grades. The new design named “TITE-gBOIN-ET” design is model-assisted and straightforward to implement in actual oncology dose-finding trials. Simulation studies show that the TITE-gBOIN-ET design significantly shortens the trial duration compared with the designs without sequential enrollment while having comparable or higher performance in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.  相似文献   

11.
12.
13.
Antiangiogenic drugs are now intensively used in clinical oncology, but some drawbacks still hamper their development. First, it is frequently unclear what patient subpopulation is likely to gain clinical benefit from these expensive therapies; second, there is evidence of (sometimes rapid) development of drug resistance in many patients; third, the results of some preclinical and clinical studies have suggested acceleration of malignant cell aggressiveness when some antiangiogenic therapies are terminated. Here we discuss the role of soluble molecules and cellular markers of neoplastic angiogenesis for patient selection and follow-up during treatment. These markers should help clinicians to decide the right therapy, advise them of the generation of mechanisms of drug resistance during antiangiogenic treatment, and finally suggest the most appropriate next line of therapy according to the new patterns of cancer vascularization induced by antiangiogenic therapies.  相似文献   

14.
Multiple drug strategies for many cancer types are now readily available and there is a clear need for tools to inform decision making on therapy selection. Although there is still a long way to go before pharmacogenomics achieves the goal of individualized selection of cancer treatment, promising progress is being made. Genetic testing for thiopurine methyltransferase (TPMT) variant alleles in patients prior to mercaptopurine administration, and for UGT1A1*28 in patients prior to administration of irinotecan therapy, along with the instigation of genotype-guided clinical trials (e.g. TYMS) are important advances in cancer pharmacogenomics. Markers for the toxicity and efficacy of many oncology drugs remain unknown; however, the examples highlighted here suggest progress is being made towards the incorporation of pharmacogenomics into clinical practice in oncology.  相似文献   

15.
There is growing interest in integrated Phase I/II oncology clinical trials involving molecularly targeted agents (MTA). One of the main challenges of these trials are nontrivial dose–efficacy relationships and administration of MTAs in combination with other agents. While some designs were recently proposed for such Phase I/II trials, the majority of them consider the case of binary toxicity and efficacy endpoints only. At the same time, a continuous efficacy endpoint can carry more information about the agent's mechanism of action, but corresponding designs have received very limited attention in the literature. In this work, an extension of a recently developed information‐theoretic design for the case of a continuous efficacy endpoint is proposed. The design transforms the continuous outcome using the logistic transformation and uses an information–theoretic argument to govern selection during the trial. The performance of the design is investigated in settings of single‐agent and dual‐agent trials. It is found that the novel design leads to substantial improvements in operating characteristics compared to a model‐based alternative under scenarios with nonmonotonic dose/combination–efficacy relationships. The robustness of the design to missing/delayed efficacy responses and to the correlation in toxicity and efficacy endpoints is also investigated.  相似文献   

16.
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.  相似文献   

17.
As new drugs rapidly advance into clinical trials, comprehensive identification of their intracellular targets becomes fundamental for the full understanding of the molecular basis of their efficacy and toxicity. This is particularly important when the targets belong to a large family and the inhibitors recognize a conserved site among different members of the class. A typical example is the kinase family, where efforts are aimed at the development of inhibitors of distinct kinases for therapeutic applications in oncology, inflammation and other disease areas. In this case, inhibitors targeting the ATP pocket may cross react with different kinases, as well as with other proteins that bind ATP. This review critically discusses the available approaches for kinase selectivity profiling. It also reviews some examples of inhibitor affinity chromatography applied to inhibitors of kinases and other protein families as a tool to identify and characterize their intracellular targets.  相似文献   

18.
As new drugs rapidly advance into clinical trials, comprehensive identification of their intracellular targets becomes fundamental for the full understanding of the molecular basis of their efficacy and toxicity. This is particularly important when the targets belong to a large family and the inhibitors recognize a conserved site among different members of the class. A typical example is the kinase family, where efforts are aimed at the development of inhibitors of distinct kinases for therapeutic applications in oncology, inflammation and other disease areas. In this case, inhibitors targeting the ATP pocket may cross react with different kinases, as well as with other proteins that bind ATP. This review critically discusses the available approaches for kinase selectivity profiling. It also reviews some examples of inhibitor affinity chromatography applied to inhibitors of kinases and other protein families as a tool to identify and characterize their intracellular targets.  相似文献   

19.
Therapeutic monoclonal antibodies (mAbs) are mostly used in cancer, as anti-infectious agents and as immunomodulatory drugs, and are amongst the most active area of research and development in the pharmaceutical industry. This class of drugs comprises unconjugated antibodies or antibody fragments, antibody-drug conjugates, radio-immunoconjugates and bispecific/trispecific molecules. A better understanding of the mechanism of action of successful mAbs is fundamental for the selection of more active and less toxic mAbs of new generation. Furthermore reliable screening of new compounds at an early stage of preclinical development, for both efficacy and toxicity, should allow the selection of the best molecules at an early stage, and improve the rate of success of this class of drugs. Here we review the major methods that are employed for testing the activity of therapeutic mAbs in vitro and in vivo in small animal models and point out to some of the pitfalls in these assays.  相似文献   

20.
Animal models of osteoarthritis are extensively used for investigating disease pathways and for preclinical testing of novel therapies. Their predictive utility, however, has often been questioned, mainly because preclinical efficacy of novel therapeutics is poorly translated in clinical trials. In the current narrative review, we consider the preclinical models that were used to support undertaking clinical trials for disease-modifying osteoarthritis drugs, and compare outcomes between clinical and preclinical studies. We discuss this in light of the 1999 Food and Drug Administration draft guidelines for industry for use in the development of drugs, devices, and biological products intended for the treatment of osteoarthritis, which raised five considerations on the usefulness of osteoarthritis models. We systematically discuss what has been learnt regarding these five points since 1999, with emphasis on replicating distinct risk factors and subtypes of human osteoarthritis, and on comprehensive evaluation of the disease in animals, including pathology of all joint tissues, biomarker analysis, and assessment of pain and joint function. Finally, we discuss lessons learnt and propose some recommendations for how the evidence from preclinical research might be strengthened with a view to improving success in clinical translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号