首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of what is being optimized in human actions with respect to various aspects of human movements and different motor tasks. From the mathematical point of view this problem consists of finding an unknown objective function given the values at which it reaches its minimum. This problem is called the inverse optimization problem. Until now the main approach to this problems has been the cut-and-try method, which consists of introducing an objective function and checking how it reflects the experimental data. Using this approach, different objective functions have been proposed for the same motor action. In the current paper we focus on inverse optimization problems with additive objective functions and linear constraints. Such problems are typical in human movement science. The problem of muscle (or finger) force sharing is an example. For such problems we obtain sufficient conditions for uniqueness and propose a method for determining the objective functions. To illustrate our method we analyze the problem of force sharing among the fingers in a grasping task. We estimate the objective function from the experimental data and show that it can predict the force-sharing pattern for a vast range of external forces and torques applied to the grasped object. The resulting objective function is quadratic with essentially non-zero linear terms.  相似文献   

2.
Apoptosis is mediated by an intracellular biochemical system that mainly includes proteins (procaspases, caspases, inhibitors, Bcl-2 protein family as well as substances released from mitochondrial intermembrane space). The dynamics of caspase activation and target cleavage in apoptosis induced by granzyme B in a single K562 cell was studied using a mathematical model of the dynamics of granzyme B-induced apoptosis developed in this work. Also the first application of optimization approach to determination of unknown kinetic constants of biochemical apoptotic reactions was presented. The optimization approach involves solving of two problems: direct and inverse. Solving the direct optimization problem, we obtain the initial (baseline) concentrations of procaspases for known kinetic constants through conditional minimization of a cost function based on the principle of minimum protein consumption by the apoptosis system. The inverse optimization problem is aimed at determination of unknown kinetic constants of apoptotic biochemical reactions proceeding from the condition that the optimal concentrations of procaspases resulting from the solution of the direct optimization problem coincide with the observed ones, that is, those determined by biochemical methods. The Multidimensional Index Method was used to perform numerical solution of the inverse optimization problem.  相似文献   

3.
An important issue in motor control is understanding the basic principles underlying the accomplishment of natural movements. According to optimal control theory, the problem can be stated in these terms: what cost function do we optimize to coordinate the many more degrees of freedom than necessary to fulfill a specific motor goal? This question has not received a final answer yet, since what is optimized partly depends on the requirements of the task. Many cost functions were proposed in the past, and most of them were found to be in agreement with experimental data. Therefore, the actual principles on which the brain relies to achieve a certain motor behavior are still unclear. Existing results might suggest that movements are not the results of the minimization of single but rather of composite cost functions. In order to better clarify this last point, we consider an innovative experimental paradigm characterized by arm reaching with target redundancy. Within this framework, we make use of an inverse optimal control technique to automatically infer the (combination of) optimality criteria that best fit the experimental data. Results show that the subjects exhibited a consistent behavior during each experimental condition, even though the target point was not prescribed in advance. Inverse and direct optimal control together reveal that the average arm trajectories were best replicated when optimizing the combination of two cost functions, nominally a mix between the absolute work of torques and the integrated squared joint acceleration. Our results thus support the cost combination hypothesis and demonstrate that the recorded movements were closely linked to the combination of two complementary functions related to mechanical energy expenditure and joint-level smoothness.  相似文献   

4.
We describe a method to solve multi-objective inverse problems under uncertainty. The method was tested on non-linear models of dynamic series and population dynamics, as well as on the spatiotemporal model of gene expression in terms of non-linear differential equations. We consider how to identify model parameters when experimental data contain additive noise and measurements are performed in discrete time points. We formulate the multi-objective problem of optimization under uncertainty. In addition to a criterion of least squares difference we applied a criterion which is based on the integral of trajectories of the system spatiotemporal dynamics, as well as a heuristic criterion CHAOS based on the decision tree method. The optimization problem is formulated using a fuzzy statement and is constrained by penalty functions based on the normalized membership functions of a fuzzy set of model solutions. This allows us to reconstruct the expression pattern of hairy gene in Drosophila even-skipped mutants that is in good agreement with experimental data. The reproducibility of obtained results is confirmed by solution of inverse problems using different global optimization methods with heuristic strategies.  相似文献   

5.
In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method), for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model’s parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively ‘important’ elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient.  相似文献   

6.
Inverse dynamics combined with a constrained static optimization analysis has often been proposed to solve the muscular redundancy problem. Typically, the optimization problem consists in a cost function to be minimized and some equality and inequality constraints to be fulfilled. Penalty-based and Lagrange multipliers methods are common optimization methods for the equality constraints management. More recently, the pseudo-inverse method has been introduced in the field of biomechanics. The purpose of this paper is to evaluate the ability and the efficiency of this new method to solve the muscular redundancy problem, by comparing respectively the musculo-tendon forces prediction and its cost-effectiveness against common optimization methods. Since algorithm efficiency and equality constraints fulfillment highly belong to the optimization method, a two-phase procedure is proposed in order to identify and compare the complexity of the cost function, the number of iterations needed to find a solution and the computational time of the penalty-based method, the Lagrange multipliers method and pseudo-inverse method. Using a 2D knee musculo-skeletal model in an isometric context, the study of the cost functions isovalue curves shows that the solution space is 2D with the penalty-based method, 3D with the Lagrange multipliers method and 1D with the pseudo-inverse method. The minimal cost function area (defined as the area corresponding to 5% over the minimal cost) obtained for the pseudo-inverse method is very limited and along the solution space line, whereas the minimal cost function area obtained for other methods are larger or more complex. Moreover, when using a 3D lower limb musculo-skeletal model during a gait cycle simulation, the pseudo-inverse method provides the lowest number of iterations while Lagrange multipliers and pseudo-inverse method have almost the same computational time. The pseudo-inverse method, by providing a better suited cost function and an efficient computational framework, seems to be adapted to the muscular redundancy problem resolution in case of linear equality constraints. Moreover, by reducing the solution space, this method could be a unique opportunity to introduce optimization methods for a posteriori articulation of preference in order to provide a palette of solutions rather than a unique solution based on a lot of hypotheses.  相似文献   

7.
Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process.  相似文献   

8.
In this article, a novel technique for non-linear global optimization is presented. The main goal is to find the optimal global solution of non-linear problems avoiding sub-optimal local solutions or inflection points. The proposed technique is based on a two steps concept: properly keep decreasing the value of the objective function, and calculating the corresponding independent variables by approximating its inverse function. The decreasing process can continue even after reaching local minima and, in general, the algorithm stops when converging to solutions near the global minimum. The implementation of the proposed technique by conventional numerical methods may require a considerable computational effort on the approximation of the inverse function. Thus, here a novel Artificial Neural Network (ANN) approach is implemented to reduce the computational requirements of the proposed optimization technique. This approach is successfully tested on some highly non-linear functions possessing several local minima. The results obtained demonstrate that the proposed approach compares favorably over some current conventional numerical (Matlab functions) methods, and other non-conventional (Evolutionary Algorithms, Simulated Annealing) optimization methods.  相似文献   

9.
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.  相似文献   

10.
This paper presents a general method to estimate unmeasured external contact loads (ECLs) acting on a system whose kinematics and inertial properties are known. This method is dedicated to underdetermined problems, e.g. when the system has two or more unmeasured external contact wrenches. It is based on inverse dynamics and a quadratic optimization, and is therefore relatively simple, computationally cost effective and robust. Net joint loads (NJLs) are included as variables of the problem, and thus could be estimated in the same procedure as the ECL and be used within the cost function.  相似文献   

11.
A constraint satisfaction problem, namely the generation of Balanced Incomplete Block Designs (v, b, r, kappa, lambda)-BIBDs, is cast in terms of function optimization. A family of cost functions that both suit the problem and admit a neural implementation is defined. An experimental comparison spanning this repertoire of cost functions and three neural relaxation strategies (Down-Hill search, Simulated Annealing and a new Parallel Mean Search procedure), as applied to all BIBDs of up to 1000 entries, has been undertaken. The experiments were performed on a Connection Machine CM-200 and their analysis required a careful study of performance measures. The simplest cost function stood out as the best one for the three strategies. Parallel Mean Search, with several processors searching cooperatively in parallel, could solve a larger number of problems than the same number of processors working independently, but Simulated Annealing yielded overall the best results. Other conclusions, as detailed in the paper, could be drawn from the comparison, BIBDs remaining a challenging problem for neural optimization algorithms.  相似文献   

12.
The applicability of static optimization (and, respectively, frequently used objective functions) for prediction of individual muscle forces for dynamic conditions has often been discussed. Some of the problems are whether time-independent objective functions are suitable, and how to incorporate muscle physiology in models. The present paper deals with a twofold task: (1) implementation of hierarchical genetic algorithm (HGA) based on the properties of the motor units (MUs) twitches, and using multi-objective, time-dependent optimization functions; and (2) comparison of the results of the HGA application with those obtained through static optimization with a criterion "minimum of a weighted sum of the muscle forces raised to the power of n". HGA and its software implementation are presented. The moments of neural stimulation of all MUs are design variables coding the problem in the terms of HGA. The main idea is in using genetic operations to find these moments, so that the sum of MUs twitches satisfies the imposed goals (required joint moments, minimal sum of muscle forces, etc.). Elbow flexion and extension movements with different velocities are considered as proper illustration. It is supposed that they are performed by two extensor muscles and three flexor muscles. The results show that HGA is a suitable means for precise investigation of motor control. Many experimentally observed phenomena (such as antagonistic co-contraction, three-phasic behavior of the muscles during fast movements) can find their explanation by the properties of the MUs twitches. Static optimization is also able to predict three-phasic behavior and could be used as practicable and computationally inexpensive method for total estimation of the muscle forces.  相似文献   

13.
The accuracy of joint torques calculated from inverse dynamics methods is strongly dependent upon errors in body segment motion profiles, which arise from two sources of noise: the motion capture system and movement artifacts of skin-mounted markers. The current study presents a method to increase the accuracy of estimated joint torques through the optimization of the angular position data used to describe these segment motions. To compute these angular data, we formulated a constrained nonlinear optimization problem with a cost function that minimizes the difference between the known ground reaction forces (GRFs) and the GRF calculated via a top-down inverse dynamics solution. To evaluate this approach, we constructed idealized error-free reference movements (of squatting and lifting) that produced a set of known “true” motions and associated true joint torques and GRF. To simulate real-world inaccuracies in motion data, these true motions were perturbed by artificial noise. We then applied our approach to these noise-induced data to determine optimized motions and related joint torques. To evaluate the efficacy of the optimization approach compared to traditional (bottom-up or top-down) inverse dynamics approaches, we computed the root mean square error (RMSE) values of joint torques derived from each approach relative to the expected true joint torques. Compared to traditional approaches, the optimization approach reduced the RMSE by 54% to 79%. Average reduction due to our method was 65%; previous methods only achieved an overall reduction of 30%. These results suggest that significant improvement in the accuracy of joint torque calculations can be achieved using this approach.  相似文献   

14.
Artificial Neural Networks, particularly the Hopfield Network have been applied to the solution of a variety of tasks formulated as optimization problems. However, the network often converges to invalid solutions, which have been attributed to an improper choice of parameters and energy functions. In this letter, we propose a fundamental change of viewpoint. We assert that the problem is not due to the bad choice of parameters or the form of the energy function chosen. Instead, we show that the Hopfield Net essentially performs only one iteration of a Sequential Unconstrained Minimization Technique (SUMT). Thus, it is not surprising that unsatisfactory results are obtained. We present results on an SUMT-based formulation for the Travelling Salesman Problem, where we consistently obtained valid tours. We also show how shorter tours can be systematically obtained.  相似文献   

15.
This paper shows a new method to estimate the muscle forces in musculoskeletal systems based on the inverse dynamics of a multi-body system associated optimal control. The redundant actuator problem is solved by minimizing a time-integral cost function, augmented with a torque-tracking error function, and muscle dynamics is considered through differential constraints. The method is compared to a previously implemented human posture control problem, solved using a Forward Dynamics Optimal Control approach and to classical static optimization, with two different objective functions. The new method provides very similar muscle force patterns when compared to the forward dynamics solution, but the computational cost is much smaller and the numerical robustness is increased. The results achieved suggest that this method is more accurate for the muscle force predictions when compared to static optimization, and can be used as a numerically 'cheap' alternative to the forward dynamics and optimal control in some applications.  相似文献   

16.
In this paper we discuss a new perspective on how the central nervous system (CNS) represents and solves some of the most fundamental computational problems of motor control. In particular, we consider the task of transforming a planned limb movement into an adequate set of motor commands. To carry out this task the CNS must solve a complex inverse dynamic problem. This problem involves the transformation from a desired motion to the forces that are needed to drive the limb. The inverse dynamic problem is a hard computational challenge because of the need to coordinate multiple limb segments and because of the continuous changes in the mechanical properties of the limbs and of the environment with which they come in contact. A number of studies of motor learning have provided support for the idea that the CNS creates, updates and exploits internal representations of limb dynamics in order to deal with the complexity of inverse dynamics. Here we discuss how such internal representations are likely to be built by combining the modular primitives in the spinal cord as well as other building blocks found in higher brain structures. Experimental studies on spinalized frogs and rats have led to the conclusion that the premotor circuits within the spinal cord are organized into a set of discrete modules. Each module, when activated, induces a specific force field and the simultaneous activation of multiple modules leads to the vectorial combination of the corresponding fields. We regard these force fields as computational primitives that are used by the CNS for generating a rich grammar of motor behaviours.  相似文献   

17.
Recently, a model for a pair of antogonistic muscles has been studied (O?uztöreli and Stein, 1982). In the present paper we formulate and investigate the minimization of the costs associated with the time to complete the movement, the oscillation about the end-point, the energy costs to the muscles to complete the movement, the cost to the nervous system to supply the inputs, and the cost of reliability in the face of perturbing forces. To solve these optimization problems the maximum principle of Pontryagin is employed. In all of these optimization problems, except the energy optimal problem, the optimal controls (active states or nervous inputs) are of the bang-bang type.  相似文献   

18.
This article applies multiobjective optimization to show how the tradeoffs between cost and carbon emissions may be obtained in the context of sustainable operations. We formulate a model where transportation mode selection and order quantity decisions are considered jointly. We derive structural properties of the model and develop several insights. First, we show that switching to a greener mode of transportation while continuing to optimize the total logistics costs function may lead to a dominated solution. Second, we prove that the modal shift occurs only under strong carbon emissions reduction requirements. Third, we show that the efficient frontier is non-convex and we analyze some implications. Finally, we analyze the impacts of an increase in truck capacity. The results are illustrated through an example of a French retailer.  相似文献   

19.

Background

A profile-comparison method with position-specific scoring matrix (PSSM) is among the most accurate alignment methods. Currently, cosine similarity and correlation coefficients are used as scoring functions of dynamic programming to calculate similarity between PSSMs. However, it is unclear whether these functions are optimal for profile alignment methods. By definition, these functions cannot capture nonlinear relationships between profiles. Therefore, we attempted to discover a novel scoring function, which was more suitable for the profile-comparison method than existing functions, using neural networks.

Results

Although neural networks required derivative-of-cost functions, the problem being addressed in this study lacked them. Therefore, we implemented a novel derivative-free neural network by combining a conventional neural network with an evolutionary strategy optimization method used as a solver. Using this novel neural network system, we optimized the scoring function to align remote sequence pairs. Our results showed that the pairwise-profile aligner using the novel scoring function significantly improved both alignment sensitivity and precision relative to aligners using existing functions.

Conclusions

We developed and implemented a novel derivative-free neural network and aligner (Nepal) for optimizing sequence alignments. Nepal improved alignment quality by adapting to remote sequence alignments and increasing the expressiveness of similarity scores. Additionally, this novel scoring function can be realized using a simple matrix operation and easily incorporated into other aligners. Moreover our scoring function could potentially improve the performance of homology detection and/or multiple-sequence alignment of remote homologous sequences. The goal of the study was to provide a novel scoring function for profile alignment method and develop a novel learning system capable of addressing derivative-free problems. Our system is capable of optimizing the performance of other sophisticated methods and solving problems without derivative-of-cost functions, which do not always exist in practical problems. Our results demonstrated the usefulness of this optimization method for derivative-free problems.
  相似文献   

20.
In a noisy system, such as the nervous system, can movements be precisely controlled as experimentally demonstrated? We point out that the existing theory of motor control fails to provide viable solutions. However, by adopting a generalized approach to the nonconvex optimization problem with the Young measure theory, we show that a precise movement control is possible even with stochastic control signals. Numerical results clearly demonstrate that a considerable significant improvement of movement precisions is achieved. Our generalized approach proposes a new way to solve optimization problems in biological systems when a precise control is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号