首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study determined the cellular energetic and structural adaptations of elderly muscle to exercise training. Forty male and female subjects (69.2 +/- 0.6 yr) were assigned to a control group or 6 mo of endurance (ET) or resistance training (RT). We used magnetic resonance spectroscopy and imaging to characterize energetic properties and size of the quadriceps femoris muscle. The phosphocreatine and pH changes during exercise yielded the muscle oxidative properties, glycolytic ATP synthesis, and contractile ATP demand. Muscle biopsies taken from the same site as the magnetic resonance measurements were used to determine myosin heavy chain isoforms, metabolite concentrations, and mitochondrial volume densities. The ET group showed changes in all energetic pathways: oxidative capacity (+31%), contractile ATP demand (-21%), and glycolytic ATP supply (-56%). The RT group had a large increase in oxidative capacity (57%). Only the RT group exhibited change in structural properties: a rise in mitochondrial volume density (31%) and muscle size (10%). These results demonstrate large energetic, but smaller structural, adaptations by elderly muscle with exercise training. The rise in oxidative properties with both ET and RT suggests that the aerobic pathway is particularly sensitive to exercise training in elderly muscle. Thus elderly muscle remains adaptable to chronic exercise, with large energetic changes accompanying both ET and RT.  相似文献   

3.
《Free radical research》2013,47(10):1179-1189
Abstract

Aim of the present study was to test, by vitamin E treatment, the hypothesis that muscle adaptive responses to training are mediated by free radicals produced during the single exercise sessions. Therefore, we determined aerobic capacity of tissue homogenates and mitochondrial fractions, tissue content of mitochondrial proteins and expression of factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. Moreover, we determined the oxidative damage extent, antioxidant enzyme activities, and glutathione content in both tissue preparations, mitochondrial ROS production rate. Finally we tested mitochondrial ROS production rate and muscle susceptibility to oxidative stress. The metabolic adaptations to training, consisting in increased muscle oxidative capacity coupled with the proliferation of a mitochondrial population with decreased oxidative capacity, were generally prevented by antioxidant supplementation. Accordingly, the expression of the factors involved in mitochondrial biogenesis, which were increased by training, was restored to the control level by the antioxidant treatment. Even the training-induced increase in antioxidant enzyme activities, glutathione level and tissue capacity to oppose to an oxidative attach were prevented by vitamin E treatment. Our results support the idea that the stimulus for training-induced adaptive responses derives from the increased production, during the training sessions, of reactive oxygen species that stimulates the expression of PGC-1, which is involved in mitochondrial biogenesis and antioxidant enzymes expression. On the other hand, the observation that changes induced by training in some parameters are only attenuated by vitamin E treatment suggests that other signaling pathways, which are activated during exercise and impinge on PGC-1, can modify the response to the antioxidant integration.  相似文献   

4.
Previous research has shown that L-carnitine L-tartrate (LCLT) supplementation beneficially affects markers of hypoxic stress following resistance exercise. However, the mechanism of this response is unclear. Therefore, the primary purpose of this study was to determine the effects of LCLT supplementation on muscle tissue oxygenation during and after multiple sets of squat exercise. Nine healthy, previously resistance-trained men (25.2 +/- 6.years, 91.2 +/- 10.2 kg, 180.2 +/- 6.3 cm) ingested 2 g.d of LCLT or an identical placebo for 23 days in a randomized, balanced, crossover, double-blind, placebo-controlled, repeated-measures study design. On day 21, forearm muscle oxygenation was measured during and after an upper arm occlusion protocol using near infrared spectroscopy (NIRS), which measures the balance of oxygen delivery in relation to oxygen consumption. On day 22, subjects performed 5 sets of 15 to 20 repetitions of squat exercise with corresponding measures of thigh muscle oxygenation, via NIRS, and serial blood draws. Compared to the placebo trial, muscle oxygenation was reduced in the LCLT trial during upper arm occlusion and following each set of resistance exercise. Despite reduced oxygenation, plasma malondealdehyde, a marker of membrane damage, was attenuated during the LCLT trial. There were no differences between trials in the vasoactive substance prostacyclin. In conclusion, because oxygen delivery was occluded during the forearm protocol, it is proposed that enhanced oxygen consumption mediated the reduced muscle oxygenation during the LCLT trial. Enhanced oxygen consumption would explain why hypoxic stress was attenuated with LCLT supplementation.  相似文献   

5.
Five subjects undertook 10 days of twice daily interval training sessions on a treadmill followed by 5 days of active recovery. On days 1, 6, 11, and 16 the subjects were required to undertake a test of submaximal and maximal work capacity on a treadmill combined with a performance test consisting of a run to exhaustion with the treadmill set at 18 km.h-1 and 1% gradient. Also on these days a pre-exercise blood sample was collected and analysed for a range of haematological, biochemical and immunological parameters. The subjects experienced a significant fall in performance on day 11 which had returned to pretraining levels on day 16. Serum ferritin concentrations were depressed significantly from pretraining concentrations at the conclusion of the recovery period while the expression of lymphocyte activation antigens (CD25+ and HLA-DR+) was increased both after the training phase and the recovery phase. The number of CD56+ cells in the peripheral circulation was depressed at the conclusion of the recovery period. Several parameters previously reported to change in association with overload training failing to reflect the decrease in performance experienced by subjects in this study, suggesting that overtraining may best be diagnosed through a multifactorial approach to the recognition of symptoms. The most important factor to consider may be a decrease in the level of performance following a regeneration period. The magnitude of this decreased performance necessary for the diagnosis of overtraining and the nature of an "appropriate" regeneration period are, however, difficult to define and may vary depending upon the training background of the subjects and the nature of the preceding training. It may or may not be associated with biochemical, haematological, physiological and immunological indicators. Individual cases may present a different range of symptoms and diagnosis of overtraining should not be excluded based on the failure of blood parameters to demonstrate variation. However, blood parameters may be useful to identify possible aetiology in each separate case report of over-training. An outstanding factor to emerge from this study was the difficulty associated with an objective diagnosis of overtraining and this is a possible reason why there have been new accounts of overtraining research in the literature.  相似文献   

6.
The purpose of this study was to evaluate and compare the effects of arginine/lysine supplementation (AL) and resistance training (RT) on changes in glucose tolerance and to determine whether alterations were associated with changes in selected hormonal parameters. The study involved 30 physically active college males, ages 20-30 yr, randomly assigned to one of four groups: placebo/control (P/C, n = 7), P/RT (n = 8), AL/C (n = 7), or AL/RT (n = 8). An AL supplement at a daily morning dose of 132 mg/kg fat-free body mass or placebo was administered orally to controls and training groups. During the 10-wk program, exercise subjects participated in a progressive resistance training program stressing all major muscle groups. Three-hour oral glucose tolerance (OGT) tests were performed on each subject before and after the 10-wk intervention to evaluate resting levels and responses of glucose, insulin, and glucagon. OGT parameters did not significantly change after intervention. It was concluded that neither AL supplementation nor RT had a significant effect on OGT.  相似文献   

7.
8.
The response of hypertrophied soleus and plantaris muscle of rats to endurance training was studied. Hypertrophy was produced by bilateral extirpation of the gastrocnemius muscle. A 13-wk training program of treadmill running initiated 30 days after removal of the gastrocnemius muscle accentuated (P less than 0.01) the hypertrophy. Succinate dehydrogenase activities of the enlarged muscles of sedentary rats were similar to those of normal animals, as were the increases associated with training. Phosphorylase and hexokinase activities were unaltered as a result of the experimental perturbations. Rates of glycogen depletion during exercise were lower (P less than 0.01) in the liver and soleus and plantaris muscles of endurance-trained animals. No difference existed in the rate of glycogen depletion of normal and hypertrophied muscle within the sedentary or trained groups. These data demonstrate that extensively hypertrophied muscle responds to training and exercise in a manner similar to that of normal muscle.  相似文献   

9.
10.
Respiratory muscle fatigue develops during exhaustive exercise and can limit exercise performance. Respiratory muscle training, in turn, can increase exercise performance. We investigated whether respiratory muscle endurance training (RMT) reduces exercise-induced inspiratory and expiratory muscle fatigue. Twenty-one healthy, male volunteers performed twenty 30-min sessions of either normocapnic hyperpnoea (n = 13) or sham training (CON, n = 8) over 4-5 wk. Before and after training, subjects performed a constant-load cycling test at 85% maximal power output to exhaustion (PRE(EXH), POST(EXH)). A further posttraining test was stopped at the pretraining duration (POST(ISO)) i.e., isotime. Before and after cycling, transdiaphragmatic pressure was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Overall, RMT did not reduce respiratory muscle fatigue. However, in subjects who developed >10% of diaphragm or abdominal muscle fatigue in PRE(EXH), fatigue was significantly reduced after RMT in POST(ISO) (inspiratory: -17 +/- 6% vs. -9 +/- 10%, P = 0.038, n = 9; abdominal: -19 +/- 10% vs. -11 +/- 11%, P = 0.038, n = 9), while sham training had no significant effect. Similarly, cycling endurance in POST(EXH) did not improve after RMT (P = 0.071), while a significant improvement was seen in the subgroup with >10% of diaphragm fatigue after PRE(EXH) (P = 0.017), but not in the sham training group (P = 0.674). However, changes in cycling endurance did not correlate with changes in respiratory muscle fatigue. In conclusion, RMT decreased the development of respiratory muscle fatigue during intensive exercise, but this change did not seem to improve cycling endurance.  相似文献   

11.
By the help of histological methods the changes in skeletal muscle of laboratory mice, which had different levels of exercise during postweaning period (training, confinement) or had been selected for body weight and endurance fitness (Du-6+LB), were investigated. The animal groups with the better endurance fitness (Du-6+LB, trained) had a higher total number of muscle fibres. An increased aerobic capacity of metabolism for the trained and selected animals, a decreased one for the confined animals resulted, indicated by the composition of muscle fibre types of M. rectus femoris. The appearance of stress-induced pathological changes of muscle fibres was observed, with the highest extent in the confined group with decreased endurance fitness. Similar correlations between structure of muscle and fitness in domestic animals are to be expected.  相似文献   

12.
To examinethe effect of endurance training (6 wk of treadmill running) onregional mitochondrial adaptations within skeletal muscle,subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria wereisolated from trained and control rat hindlimb muscles.Mitochondrial oxygen consumption(O2) was measuredpolarographically by using the following substrates: 1 mM pyruvate + 1 mM malate (P+M), 10 mM 2-oxoglutarate, 45 µMpalmitoyl-DL-carnitine + 1 mMmalate, and 10 mM glutamate. Spectrophotometric assays ofcytochrome-c reductase andNAD-specific isocitrate dehydrogenase (IDH) activity were alsoperformed. Maximal (state III) and resting (state IV) O2 were lower in SS than inIMF mitochondria in both trained and control groups. In SSmitochondria, training elicited significant 36 and 20% increases instate III O2 with P+M andglutamate, respectively. In IMF mitochondria, training resulted in asmaller (20%), yet significant, increase in state IIIO2 with P+M as a substrate,whereas state IIIO2 increased 33 and 27% with 2-oxoglutarate andpalmitoyl-DL-carnitine + malate,respectively. Within groups,cytochrome-c reductase and IDHactivities were lower in SS when compared with IMF mitochondria.Training increased succinate-cytochrome-c reductase inboth SS (30%) and IMF mitochondria (28%). IDH activity increased 32%in the trained IMF but remained unchanged in SS mitochondria. Weconclude that endurance training promotes substantial changes inprotein stoichiometry and composition of both SS and IMF mitochondria.

  相似文献   

13.
Some mitochondrial enzymatic activities (succinate dehydrogenase, NADH cytochrome reductase, cytochrome oxidase) were studied in the gastrocnemius and soleus muscle of the rat. The modifications of the enzyme activity, induced by endurance training, were found to be functions of 1) daily work load and 2) total training time. The treatment with an effective dose of vasodilating substances (papaverine, nicergoline, dipyridamole, and bamethan) showed that 1) nicergoline, bamethan, and dipyridamole were differently able to shorten the time of appearance of the increase in the enzymatic activities; 2) however, long-term treatments with these drugs did not prove able to modify the plateau level of the enzymatic activity increase, for a given amount of endurance training; 3) the pharmacodynamic effect on enzymatic activities was in no way related to the vasodilating effect of these drugs, since the effect was not observed with papaverine. The transition from a given level of endurance training to a lower one led to a proportional decrease of the mitochondrial enzymatic activities, thus pointing out the relation between amount of training and enzymatic activity. The drugs studied were unable to modify the decrease of enzymatic activity induced by lower work load.  相似文献   

14.
Polidori C  Geary N 《Peptides》2002,23(9):1697-1700
The involvement of the hypothalamic melanocortin-3 and -4 (MC3/4) receptors system in the inhibitory actions of estradiol (E2) on feeding was investigated. Ovariectomized Long-Evans rats with lateral ventricular (LICV) injection cannulae were maintained on a near-physiological, cyclic schedule of E2 treatment. LICV injections of 0.5 nmol of the MC3/4 agonist MTII decreased feeding, and LICV injections of the MC3/4 antagonists SHU9119 (12.5-500 pmol) and AgRP (1.0 nmol) stimulated feeding. None of these effects was affected by E2 treatment. Thus, hypothalamic MC3/4 receptors play a physiological role in the control of feeding in female rats as in males but do not mediate E2's feeding effects during the ovarian cycle.  相似文献   

15.
16.
While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training. To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, 21 young healthy (age 29 ± 1 y, BMI 25 ± 3 kg/m(2)) men were randomly assigned to either an antioxidant [AO; 500 mg vitamin C and 400 IU vitamin E (α-tocopherol) daily] or a placebo (PL) group that both underwent a supervised intense endurance-training program 5 times/wk for 12 wk. A 3-h euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (Vo(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed before and after the training. Muscle biopsies were obtained for determination of the concentration and activity of proteins regulating glucose metabolism. Although plasma levels of vitamin C (P < 0.05) and α-tocopherol (P < 0.05) increased markedly in the AO group, insulin-stimulated glucose uptake increased similarly in both the AO (17.2%, P < 0.05) and the PL (18.9%, P < 0.05) group in response to training. Vo(2max) and P(max) also increased similarly in both groups (time effect, P < 0.0001 for both) as well as protein content of GLUT4, hexokinase II, and total Akt (time effect, P ≤ 0.05 for all). Our results indicate that administration of antioxidants during strenuous endurance training has no effect on the training-induced increase in insulin sensitivity in healthy individuals.  相似文献   

17.
18.
Based mostly on cross-sectional data, it has been suggested that aerobic training may decrease lower body negative pressure (LBNP) tolerance through a hypothesized attenuation in both high- and low-pressure baroreflex gain. An experimental group (EXP) of eight male subjects [22.1 +/- 1.4 (SD) yr] underwent a 10-wk treadmill and cycle ergometer training program, which resulted in a 21% increase in maximal O2 uptake (VO2 max), 45.7 +/- 1.5 vs. 55.2 +/- 1.7 (SE) ml.kg-1.min-1; P less than 0.05]. A control group, (CON; n = 7; 27.3 +/- 5.7 yr), which did not undergo training, had no significant changes in VO2 max (49.4 +/- 3.3 vs. 48.8 +/- 3.2 ml.kg-1.min-1). Before and after training the EXP and CON groups participated in LBNP tolerance tests (terminated at presyncope) and neck pressure-suction testing (to describe the carotid sinus-heart rate baroreflex). LBNP tolerance, as defined by three different indexes, and carotid sinus-heart rate baroreflex gain were not altered in either group after training. Furthermore, there were no changes in LBNP heart rate, blood pressure, leg circumference, forearm blood flow, or forearm vascular resistance responses at any level of LBNP challenge after training. In conclusion, 10 wk of aerobic training did not change LBNP tolerance or alter the reflex cardiovascular compensatory mechanisms activated during LBNP.  相似文献   

19.
Creatine monohydrate has become the supplement of choice for many athletes striving to improve sports performance. Recent data indicate that athletes may not be using creatine as a sports performance booster per se but instead use creatine chronically as a training aid to augment intense resistance training workouts. Although several studies have evaluated the combined effects of creatine supplementation and resistance training on muscle strength and weightlifting performance, these data have not been analyzed collectively. The purpose of this review is to evaluate the effects of creatine supplementation on muscle strength and weightlifting performance when ingested concomitant with resistance training. The effects of gender, interindividual variability, training status, and possible mechanisms of action are discussed. Of the 22 studies reviewed, the average increase in muscle strength (1, 3, or 10 repetition maximum [RM]) following creatine supplementation plus resistance training was 8% greater than the average increase in muscle strength following placebo ingestion during resistance training (20 vs. 12%). Similarly, the average increase in weightlifting performance (maximal repetitions at a given percent of maximal strength) following creatine supplementation plus resistance training was 14% greater than the average increase in weightlifting performance following placebo ingestion during resistance training (26 vs. 12%). The increase in bench press 1RM ranged from 3 to 45%, and the improvement in weightlifting performance in the bench press ranged from 16 to 43%. Thus there is substantial evidence to indicate that creatine supplementation during resistance training is more effective at increasing muscle strength and weightlifting performance than resistance training alone, although the response is highly variable.  相似文献   

20.
Skeletal muscle adapts differently to training with high forces or with high velocities. The effects of these disparate training protocols on the inspiratory muscles were investigated in ten healthy volunteers. Five subjects trained using high force (pressure) loads (pressure trainers) and five trained using high velocity (flow) loads (flow trainers). Pressure training entailed performing 30 maximal static inspiratory efforts against a closed airway. Flow training entailed performing 30 sets of three maximal dynamic inspiratory efforts against a minimal resistance. Training was supervised and carried out 5 days a week for 6 weeks. Inspiratory flow rates and oesophageal pressure-time curves were measured before and after training. Peak inspiratory pressures during maximal static and dynamic efforts and peak flows during the maximal dynamic efforts were calculated. The time-to-peak pressure and rate of rise in peak pressure during maximal static and dynamic manoeuvres were also calculated before and following training. Maximal static pressure increased in the pressure training group and maximal dynamic pressure increased in the flow training group. Both groups increased the rate of pressure production (dP/dt) during their respective maximal efforts. The post-training decrease in time-to-peak pressure was proportionately greater in the flow trainers than in the pressure trainers. The differences in time-to-peak pressure between the two groups were consistent with the different effects of force and velocity training on the time-to-peak tension of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号