首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b), with up-regulation of iNOS (inducible nitric oxide synthase), ARG (arginase) and IL (interleukine)-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide)–IFNγ (interferon γ) conditioned media] and C-CM (control-conditioned media) induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well.  相似文献   

2.

Background  

A common feature of Alzheimer's disease (AD) pathology is the abundance of activated microglia in neuritic plaques containing amyloid-beta protein (Aβ) and associated molecules including heparan sulfate proteoglycan (HSPG). Besides the role as pathological chaperone favouring amyloidogenesis, little is known about whether or not HSPG can induce microglial activation. Cultures of primary murine microglia were used to assess the effect of HSPG on production of proinflammatory molecules that are known to be present in neuritic plaques of AD.  相似文献   

3.
Microglial activation is an important pathological component in brains of patients with Alzheimer's disease (AD), and fibrillar amyloid-beta (Abeta) peptides play an important role in microglial activation in AD. However, mechanisms by which Abeta peptides induce the activation of microglia are poorly understood. The present study underlines the importance of TLR2 in mediating Abeta peptide-induced activation of microglia. Fibrillar Abeta1-42 peptides induced the expression of inducible NO synthase, proinflammatory cytokines (TNF-alpha, IL-1beta, and IL-6), and integrin markers (CD11b, CD11c, and CD68) in mouse primary microglia and BV-2 microglial cells. However, either antisense knockdown of TLR2 or functional blocking Abs against TLR2 suppressed Abeta1-42-induced expression of proinflammatory molecules and integrin markers in microglia. Abeta1-42 peptides were also unable to induce the expression of proinflammatory molecules and increase the expression of CD11b in microglia isolated from TLR2(-/-) mice. Finally, the inability of Abeta1-42 peptides to induce the expression of inducible NO synthase and to stimulate the expression of CD11b in vivo in the cortex of TLR2(-/-) mice highlights the importance of TLR2 in Abeta-induced microglial activation. In addition, ligation of TLR2 alone was also sufficient to induce microglial activation. Consistent to the importance of MyD88 in mediating the function of various TLRs, antisense knockdown of MyD88 also inhibited Abeta1-42 peptide-induced expression of proinflammatory molecules. Taken together, these studies delineate a novel role of TLR2 signaling pathway in mediating fibrillar Abeta peptide-induced activation of microglia.  相似文献   

4.
Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.  相似文献   

5.
6.
Microglia regulate immune responses in the brain, and their activation is key to the pathogenesis of diverse neurological diseases. Receptor-mediated lysophosphatidic acid (LPA) signaling has been known to regulate microglial biology, but it is still unclear which receptor subtypes guide the biology, particularly, microglial activation. Here, we investigated the pathogenic aspects of LPA receptor subtype 1 (LPA1) in microglial activation using a systemic lipopolysaccharide (LPS) administration-induced septic mouse model in vivo and LPS-stimulated rat primary microglia in vitro. LPA1 knockdown in the brain with its specific shRNA lentivirus attenuated the sepsis-induced microglia activation, morphological transformation, and proliferation. LPA1 knockdown also resulted in the downregulation of TNF-α, at both mRNA and protein levels in septic brains, but not IL-1β or IL-6. In rat primary microglia, genetic or pharmacological blockade of LPA1 attenuated gene upregulation and secretion of TNF-α in LPS-stimulated cells. In particular, the latter was associated with the suppressed TNF-α converting enzyme (TACE) activity. We reaffirmed these biological aspects using a BV2 microglial cell line in which LPA1 expression was negligible. LPA1 overexpression in BV2 cells led to significant increments in TNF-α production upon stimulation with LPS, whereas inhibiting LPA1 reversed the production. We further identified ERK1/2, but not p38 MAPK or Akt, as the underlying effector pathway after LPA1 activation in both septic brains and stimulated microglia. The current findings of the novel role of LPA1 in microglial activation along with its mechanistic aspects could be applied to understanding the pathogenesis of diverse neurological diseases that involve microglial activation.  相似文献   

7.
8.
In Alzheimer's disease (AD), fibrillar amyloid-beta (Abeta) peptides form senile plaques associated with activated microglia. Recent studies have indicated that microglial Abeta clearance is facilitated by several activators such as transforming growth factor-beta1 (TGF-beta1). The relationship between microglia and Abeta formation and deposition is still unclear. In the present study, high mobility group protein-1 (HMG1) inhibited the microglial uptake of Abeta (1-42) in the presence and absence of TGF-beta1. In addition, HMG1 bound to Abeta (1-42) and stabilized the oligomerization. In AD brains, protein levels of HMG1 were significantly increased in both the cytosolic and particulate fractions, and HMG1 and Abeta were colocalized in senile plaques associated with microglia. These results suggest that HMG1 may regulate the homeostasis of extracellular Abeta (1-42) and Abeta oligomerization.  相似文献   

9.
In intracerebral hemorrhage, microglia become rapidly activated and remove the deposited blood and cellular debris. To survive in a harmful hemorrhagic or posthemorrhagic condition, activated microglia must be equipped with appropriate self-defensive mechanism(s) to resist the toxicity of hemin, a component released from damaged RBCs. In the current study, we found that activation of microglia by pretreatment with LPS markedly reduced their vulnerability to hemin toxicity in vitro. Similarly, intracorpus callosum microinjection of LPS prior to hemin treatment reduced the brain tissue damage caused by hemin and increased microglial density in the penumbra in rats. LPS induced the expressions of inducible NO synthase (iNOS) and heme oxygenase (HO)-1, the rate-limiting enzyme in heme degradation in microglia. The preventive effect by LPS was significantly diminished by an iNOS inhibitor, L-N(6)-(1-iminoethyl)lysine, whereas it was mimicked by a NO donor, diethylamine-NONOate, both suggesting the crucial role of NO in the modulation of hemin-induced toxicity in activated microglia. We further found that NO reduced hemin toxicity via inhibition of hemin-induced activation of JNK and p38 MAPK pathways in microglia. Whereas HO-1 expression in LPS-stimulated microglia was markedly blocked by L-N(6)-(1-iminoethyl)lysine, the HO-1 inhibitor, tin protoporphyrin, increased iNOS expression and decreased the susceptibility of LPS-activated microglia to hemin toxicity. The data indicate that the mutual interaction between NO and HO-1 plays a critical role in modulating the adaptive response of activated microglia to hemin toxicity. Better understanding of the survival mechanism of activated microglia may provide a therapeutic strategy to attenuate the devastating intracerebral hemorrhagic injury.  相似文献   

10.
11.
Mounting evidence supports the hypothesis that pro-inflammatory cytokines secreted by astrocytes and microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Here we examine the involvement of interleukin-1beta (IL-1beta) and microglia activation in nociceptive processing in rat models of spinal cord inflammation. Following application of lipopolysaccharide (LPS) to an ex vivo dorsal horn slice preparation, we observed rapid secretion of IL-1beta which was prevented by inhibition of glial cell metabolism and by inhibitors of either p38 mitogen-activated protein kinase (MAPK) or caspase 1. LPS superfusion also induced rapid secretion of active caspase 1 and apoptosis-associated speck-like protein containing a caspase recruitment domain from the isolated dorsal horn. Extensive microglial cell activation in the dorsal horn, as determined by immunoreactivity for phosphorylated p38 MAPK, was found to correlate with the occurrence of IL-1beta secretion. In behavioural studies, intrathecal injection of LPS in the lumbar spinal cord produced mechanical hyperalgesia in the rat hind-paws which was attenuated by concomitant injections of a p38 MAPK inhibitor, a caspase 1 inhibitor or the rat recombinant interleukin 1 receptor antagonist. These data suggest a critical role for the cytokine IL-1beta and caspase 1 rapidly released by activated microglia in enhancing nociceptive transmission in spinal cord inflammation.  相似文献   

12.
13.
Lipid droplets (LDs) are neutral lipid-rich organelles involved in many cellular processes. A well-known example is their accumulation in leukocytes upon activation by pro-inflammatory stimuli such as lipopolysaccharides (LPS) derived from gram-negative bacteria. A role of LDs and LD-associated proteins during inflammation in the brain is unknown, however. We have now studied their dynamics and regulation in microglia, the resident immune cells in the brain. We find that LPS treatment of microglia leads to the accumulation in them of LDs, and enhancement of the size of LDs. This induction of LDs was abolished by triacsin C, an inhibitor of triglyceride biosynthesis. LPS strongly activated c-Jun N-terminal kinase (JNK) and p38 MAPK stress signaling pathways and increased the expression of LD-associated protein perilipin-2 (ADRP) in a time-dependent manner. Immunostaining showed that perilipin-2 in LPS-treated microglia predominantly colocalized with LDs. Inhibitors of p38 α/β (SB203580) and PI3K/Akt pathway (LY294002), but not that of JNK (SP600125), reduced LPS-induced LD accumulation and eliminated the activating effect of LPS on perilipin-2. In addition, cytosolic phospholipase A(2) (cPLA(2)-α), a key enzyme for arachidonic acid release, colocalized with LPS-induced LDs. These observations suggest that LDs may play an important role in eicosanoid synthesis in activated microglia; they provide a novel insight into the regulation of LDs in inflammatory cells of the brain and point to a potential role of p38 α/β in LPS-induced LD accumulation. Collectively, our findings imply that LD formation and perilipin-2 induction could be microglial biomarkers of inflammation in the central nervous system.  相似文献   

14.
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Its pathology is associated with the deposition of amyloid β (Aβ), an abnormal extracellular peptide. Moreover, its pathological progression is closely accompanied by neuroinflammation. Specifically, Aβ-associated microglial overactivation may have the central role in AD pathogenesis. Interestingly, arginine metabolism may contribute to the equilibrium between M1 and M2 microglia. However, little is known about the involvement of arginine metabolism in Aβ-induced microglial neuroinflammation and neurotoxicity. Moreover, the underlying mechanism by which Aβ induces the transition of microglia to the M1 phenotype remains unclear. In this study, we investigated the role of Aβ in mediating microglial activation and polarization both in vitro and in vivo. Our results demonstrated that under the Aβ treatment, ornithine decarboxylase (ODC), a rate-limiting enzyme in the regulation of arginine catabolism, regulates microglial activation by altering the antizyme (AZ) + 1 ribosomal frameshift. Furthermore, the restoration of ODC protein expression levels has profound effects on inhibition of Aβ-induced M1 markers and thus attenuates microglial-mediated cytotoxicity. Altogether, our findings suggested that Aβ may contribute to M1-like activation by disrupting the balance between ODC and AZ in microglia.  相似文献   

15.
Murine microglial cells produce and respond to interleukin-18   总被引:5,自引:0,他引:5  
Interleukin (IL)-18 (interferon-gamma-inducing factor or IL-1gamma) belongs structurally to the IL-1 cytokine family and shares biological properties with IL-12. Expression, intracellular signaling, and functional relevance of IL-18 within the CNS are mostly unknown. We show that IL-18 protein is synthesized within mouse brain, preferentially during early postnatal stages, and that microglial cells but not astrocytes are a potential source. IL-18 is produced by cultured microglia on exposure to lipopolysaccharide (LPS). Microglia also express major components of the IL-1/IL-18 receptor system. On IL-18 stimulation, microglial IL-1 receptor-associated kinase (IRAK) can be coprecipitated with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) but not with IL-1 receptor type I, indicating that IRAK recruits TRAF6 during IL-18 signaling. IL-18 inhibits the LPS-induced release of IL-12 and attenuates that of TNF-alpha, whereas the production of IL-6 and macrophage inflammatory protein-1alpha is only marginally affected. IL-18 may play a role during CNS development and can be produced by activated microglia, thus probably contributing to immune and inflammatory processes in the brain.  相似文献   

16.
Lipid droplets (LDs) are neutral lipid-rich organelles involved in many cellular processes. A well-known example is their accumulation in leukocytes upon activation by pro-inflammatory stimuli such as lipopolysaccharides (LPS) derived from gram-negative bacteria. A role of LDs and LD-associated proteins during inflammation in the brain is unknown, however. We have now studied their dynamics and regulation in microglia, the resident immune cells in the brain. We find that LPS treatment of microglia leads to the accumulation in them of LDs, and enhancement of the size of LDs. This induction of LDs was abolished by triacsin C, an inhibitor of triglyceride biosynthesis. LPS strongly activated c-Jun N-terminal kinase (JNK) and p38 MAPK stress signaling pathways and increased the expression of LD-associated protein perilipin-2 (ADRP) in a time-dependent manner. Immunostaining showed that perilipin-2 in LPS-treated microglia predominantly colocalized with LDs. Inhibitors of p38 α/β (SB203580) and PI3K/Akt pathway (LY294002), but not that of JNK (SP600125), reduced LPS-induced LD accumulation and eliminated the activating effect of LPS on perilipin-2. In addition, cytosolic phospholipase A2 (cPLA2-α), a key enzyme for arachidonic acid release, colocalized with LPS-induced LDs. These observations suggest that LDs may play an important role in eicosanoid synthesis in activated microglia; they provide a novel insight into the regulation of LDs in inflammatory cells of the brain and point to a potential role of p38 α/β in LPS-induced LD accumulation. Collectively, our findings imply that LD formation and perilipin-2 induction could be microglial biomarkers of inflammation in the central nervous system.  相似文献   

17.
Microglial activation is considered as a hallmark of several neurodegenerative disorders. During microglial activation, the expression of CD11b, the beta-integrin marker of microglia, is increased. However, the molecular mechanism behind increased microglial CD11b expression is poorly understood. The present study was undertaken to explore the role of reactive oxygen species (ROS) in the expression of CD11b in microglial cells. Bacterial lipopolysaccharide (LPS) stimulated the expression of CD11b in mouse BV-2 microglial cells and primary microglia, the effect that was blocked by antioxidants such as N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC). Furthermore, comicroinjection of either NAC or PDTC with LPS was also able to suppress LPS-stimulated expression of CD11b in striatum in vivo. Similarly, other neurotoxic molecules, such as interleukin-1beta (IL-1beta), IL-12 p40(2), fibrillar amyloid-beta (Abeta) peptides, HIV-1 gp120, and double-stranded RNA (poly(IC)), also stimulated the expression of CD11b in microglia through the involvement of ROS. Complete inhibition of LPS-stimulated expression of CD11b by catalase, induction of CD11b expression by H2O2 alone, and inhibition of superoxide-stimulated CD11b expression by catalase suggest that H2O2, but not superoxide, is in fact involved in the expression of CD11b. Interestingly, we also demonstrate that ROS stimulated the expression of CD11b after the induction of nitric oxide (NO) production and failed to stimulate CD11b when NO production was inhibited by either 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) or L-N6-(1-iminoethyl)-L-lysine (L-NIL). Taken together, these studies suggest that the up-regulation of CD11b in microglia is redox sensitive and that ROS up-regulates CD11b via NO.  相似文献   

18.
It has been reported that ligation of CD40 with CD40 ligand (CD40L) results in microglial activation as evidenced by p44/42 mitogen-activated protein kinase (MAPK) dependent tumor necrosis factor alpha (TNF-alpha) production. Previous studies have shown that CD45, a functional transmembrane protein-tyrosine phosphatase, is constitutively expressed at moderate levels on microglial cells and this expression is greatly elevated on activated microglia. To investigate the possibility that CD45 might modulate CD40L-induced microglial activation, we treated primary cultured microglial cells with CD40L and anti-CD45 antibody. Data show that cross-linking of CD45 markedly inhibits CD40L-induced activity of the Src family kinases Lck and Lyn. Further, co-treatment of microglia with CD40L and anti-CD45 antibody results in significant inhibition of microglial TNF-alpha production through inhibition of p44/42 MAPK activity, a downstream signaling event resulting from Src activation. Accordingly, primary cultured microglial cells from mice deficient in CD45 demonstrate hyper-responsiveness to ligation of CD40, as evidenced by increased p44/42 MAPK activation and TNF-alpha production. Taken together, these results show that CD45 plays a novel role in suppressing CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK cascade.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号