首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The visual acuity of the tammar wallaby was estimated using a behavioural discrimination task. The wallabies were trained to discriminate a high-contrast (86%) square-wave grating from a grey field of equal luminance (1000–6000 cd m−2). Visual-evoked cortical potentials were used to measure the complete contrast sensitivity function. The stimulus was a sinusoidal phase reversal of a sinusoidally modulated grating of various spatial frequencies and contrasts with a mean luminance of 40 cd m−2. The behavioural acuity was estimated to be about 4.8 cycles/deg. The contrast sensitivity peaked at about 0.15 cycles/deg and declined towards both lower and higher spatial frequencies. The cut-off frequency of the contrast sensitivity function is slightly lower than the behaviourally measured acuity at about 2.7 cycles/deg. The retinal magnification factor was estimated anatomically from laser lesions to be about 0.16 mm/deg. Based on the known ganglion cell density and the retinal magnification factor, an anatomical upper limit to visual acuity of about 6 cycles/deg can be calculated. The differences in estimates of visual acuity between the behavioural and anatomical methods on the one side and physiology on the other side are discussed. Accepted: 28 May 1998  相似文献   

2.
Barrett BT  Whitaker D 《Spatial Vision》2004,17(1-2):111-126
This study investigates the influence of contrast and exposure duration on vernier acuity thresholds for abutting and separated narrowband stimuli, and asks whether these data can predict broadband vernier performance. Vernier thresholds were determined for sinusoidal grating stimuli at two spatial frequencies (1 and 8 c/deg) across a range of contrasts (0.05-0.8) and exposure durations (35-2100 ms). Performance was assessed for the abutting configuration, and when a gap equivalent to 0.5 to 1.5 times the spatial period of the grating was introduced between the upper and lower halves of the grating. Vernier thresholds were also determined for a square-wave stimulus as a function of contrast (0.06 to 0.78). Exposure duration was fixed at 2100 ms. In addition, thresholds were determined at the appropriate contrast levels for the fundamental frequency (1.8 c/deg) of the square-wave, and for a number of the harmonics (3F, 5F, 7F, 9F). Our results provide support for filter models of vernier acuity by showing that vernier performance for abutting and closely-separated broadband stimuli represents the envelope of vernier sensitivity of those spatial frequency mechanisms that are activated by the broadband stimulus. In the case of high frequency grating stimuli presented for long exposure durations, vernier performance can be invariant across much of the contrast range. Despite this, however, contrast independence is not exhibited for abutting broadband stimuli because, within the broadband stimuli, the contrast of the higher harmonic components never reaches a level to reveal this plateau.  相似文献   

3.
Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (~3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities.  相似文献   

4.
If two thin bars of different luminance are placed side by side, their joint spatial position in a Vernier alignment task is determined simply by their relative luminances. The threshold luminance contrast difference required to produce a just detectable change in spatial position corresponds to a spatial shift of 5-20 arcsec in the centroid of the retinal light distribution, depending upon contrast relative to the background. This technique may be used to measure acuity with a display that has a spatial resolution considerably worse than the Vernier offset threshold. We have also extended the centroid technique to components that differ both in wavelength and luminance. Colour was found to make no essential difference to the task. Taking into account the spread of light in the retinal image, the manifest contrast thresholds are equivalent to threshold intensity increments between adjacent foveal receptors of less than 1% comparable to the values reported by Hecht and Mintz for dark line detection.  相似文献   

5.
Recent studies have used grating orientation as a measure of tactile spatial acuity on the fingerpad. In this task subjects identify the orientation of a grooved surface presented in either the proximal-distal or lateral-medial orientation. Other recent results have suggested that there might be a substantial anisotropy on the fingerpad related to spatial sensitivity. This anisotropy was revealed using a task in which subjects discriminated between a smooth and a grooved surface presented at different orientations on the fingerpad. The anisotropy was substantial enough that it might permit subjects to discriminate grating orientation on the basis of intensive rather than spatial cues. The present study examined the possibility that anisotropy on the fingerpad might provide cues in a spatial acuity task. The ability of subjects to discriminate between a smooth and a grooved surface was measured under conditions that are typically used in grating orientation tasks. No evidence of anisotropy was found. Also, using a grating orientation task, separate estimates were made of sensitivity in the proximal-distal and lateral-medial orientations. Again no evidence of anisotropy was found. Consistent with changes in the density of innervation, grating orientation sensitivity was found to vary as a function of location on the fingerpad. The results support the view that grating orientation is a valid measure of spatial acuity reflecting underlying neural, spatial mechanisms.  相似文献   

6.
Tactile acuity is known to decline with age in adults, possibly as the result of receptor loss, but less is understood about how tactile acuity changes during childhood. Previous research from our laboratory has shown that fingertip size influences tactile spatial acuity in young adults: those with larger fingers tend to have poorer acuity, possibly because mechanoreceptors are more sparsely distributed in larger fingers. We hypothesized that a similar relationship would hold among children. If so, children’s tactile spatial acuity might be expected to worsen as their fingertips grow. However, concomitant CNS maturation might result in more efficient perceptual processing, counteracting the effect of fingertip growth on tactile acuity. To investigate, we conducted a cross-sectional study, testing 116 participants ranging in age from 6 to 16 years on a precision-controlled tactile grating orientation task. We measured each participant''s grating orientation threshold on the dominant index finger, along with physical properties of the fingertip: surface area, volume, sweat pore spacing, and temperature. We found that, as in adults, children with larger fingertips (at a given age) had significantly poorer acuity, yet paradoxically acuity did not worsen significantly with age. We propose that finger growth during development results in a gradual decline in innervation density as receptive fields reposition to cover an expanding skin surface. At the same time, central maturation presumably enhances perceptual processing.  相似文献   

7.
Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants'' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task – perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task – the participants'' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation.  相似文献   

8.
The visual response of a cell in the primary visual cortex (V1) to a drifting grating stimulus at the cell’s preferred orientation decreases when a second, perpendicular, grating is superimposed. This effect is called masking. To understand the nonlinear masking effect, we model the response of Macaque V1 simple cells in layer 4Cα to input from magnocellular Lateral Geniculate Nucleus (LGN) cells. The cortical model network is a coarse-grained reduction of an integrate-and-fire network with excitation from LGN input and inhibition from other cortical neurons. The input is modeled as a sum of LGN cell responses. Each LGN cell is modeled as the convolution of a spatio-temporal filter with the visual stimulus, normalized by a retinal contrast gain control, and followed by rectification representing the LGN spike threshold. In our model, the experimentally observed masking arises at the level of LGN input to the cortex. The cortical network effectively induces a dynamic threshold that forces the test grating to have high contrast before it can overcome the masking provided by the perpendicular grating. The subcortical nonlinearities and the cortical network together account for the masking effect. Melinda Koelling is formerly from Center for Neural Science and Courant Institute, New York University.  相似文献   

9.
A common view about visual consciousness is that it could arise when and where activity reaches some higher level of processing along the cortical hierarchy. Reports showing that activity in striate cortex can be dissociated from awareness , whereas the latter modulates activity in higher areas , point in this direction. In the specific case of visual motion, a central, "perceptual" role has been assigned to area V5: several human and monkey studies have shown V5 activity to correlate with the motion percept. Here we show that activity in this and other higher cortical areas can be also dissociated from perception and follow the physical stimulus instead. The motion information in a peripheral grating modulated fMRI responses, despite being invisible to human volunteers: under crowding conditions , areas V3A, V5, and parietal cortex still showed increased activity when the grating was moving compared to when it was flickering. We conclude that stimulus-specific activation of higher cortical areas does not necessarily result in awareness of the underlying stimulus.  相似文献   

10.
In the Ebbinghaus illusion, the context surrounding an object modulates its subjectively perceived size. Previous work implicates human primary visual cortex (V1) as the neural substrate mediating this contextual effect. Here we studied in healthy adult humans how two different types of context (large or small inducers) in this illusion affected size perception by comparing each to a reference stimulus without any context. We found that individual differences in the magnitudes of the illusion produced by either type of context were correlated with V1 area defined through retinotopic mapping using functional MRI. However, participants'' objective ability to discriminate the size of objects presented in isolation was unrelated to illusion strength and did not correlate with V1 area. Control analyses showed no correlations between behavioral measures and the overall V1 area estimated probabilistically on the basis of neuroanatomy alone. Therefore, subjective size perception correlated with variability in central cortical magnification rather than the anatomical extent of primary visual cortex. We propose that such changes in subjective perception of size are mediated by mechanisms that scale with the extent to which an individual''s V1 selectively represents the central visual field.  相似文献   

11.
It is shown that Vernier acuity is nearly proportional to line length (in the range 5-20 arc min), provided that the orientation of the target is randomized from trial to trial and provided that no gap interrupts the line. The effect of a pair of gaps, one in each of the Vernier bars leads to the conclusion that line terminations dissect the target into independent parts prior to the visual analysis of shape and orientation cues, which are only assessed between such features.  相似文献   

12.
THE CORTICAL MAGNIFICATION FACTOR AND PHOTOPIC VISION   总被引:1,自引:0,他引:1  
1. The concept of a topographical representation of sensory surfaces on the mammalian cerebral cortex is now well established. Furthermore, there is claimed an expanded representation for those sensory surfaces associated with behavioural specializations.
2. In the case of the visual system, the field of view associated with the retina is projected on to the striate cortex, with the central fovea or point of most acute vision occupying a disproportionately large area of representation.
3. The term 'cortical magnification factor', denoted by M, has been introduced to indicate, for a given eccentricity and meridian, the linear distance in mm along the primary visual cortex concerned with each degree of visual field.
4. The quantitative accuracy of this function subsequently has been improved and a relationship established between cortical magnification and visual acuity in man.
5. On the basis of spatio-temporal investigations across the visual field under levels of photopic adaptation, visual scientists have utilized retino-cortical magnification to reconcile aspects of structure and function in the human visual system.  相似文献   

13.
An important unresolved question in sensory neuroscience is whether, and if so with what time course, tactile perception is enhanced by visual deprivation. In three experiments involving 158 normally sighted human participants, we assessed whether tactile spatial acuity improves with short-term visual deprivation over periods ranging from under 10 to over 110 minutes. We used an automated, precisely controlled two-interval forced-choice grating orientation task to assess each participant's ability to discern the orientation of square-wave gratings pressed against the stationary index finger pad of the dominant hand. A two-down one-up staircase (Experiment 1) or a Bayesian adaptive procedure (Experiments 2 and 3) was used to determine the groove width of the grating whose orientation each participant could reliably discriminate. The experiments consistently showed that tactile grating orientation discrimination does not improve with short-term visual deprivation. In fact, we found that tactile performance degraded slightly but significantly upon a brief period of visual deprivation (Experiment 1) and did not improve over periods of up to 110 minutes of deprivation (Experiments 2 and 3). The results additionally showed that grating orientation discrimination tends to improve upon repeated testing, and confirmed that women significantly outperform men on the grating orientation task. We conclude that, contrary to two recent reports but consistent with an earlier literature, passive tactile spatial acuity is not enhanced by short-term visual deprivation. Our findings have important theoretical and practical implications. On the theoretical side, the findings set limits on the time course over which neural mechanisms such as crossmodal plasticity may operate to drive sensory changes; on the practical side, the findings suggest that researchers who compare tactile acuity of blind and sighted participants should not blindfold the sighted participants.  相似文献   

14.
Visual latencies, and their variation with stimulus attributes, can provide information about the level in the visual system at which different attributes of the image are analysed, and decisions about them made. A change in the colour, structure or movement of a visual stimulus brings about a highly reproducible transient constriction of the pupil that probably depends on visual cortical mechanisms. We measured this transient response to changes in several attributes of visual stimuli, and also measured manual reaction times to the same stimulus changes. Through analysis of latencies, we hoped to establish whether changes in different stimulus attributes were processed by mechanisms at the same or different levels in the visual pathway. Pupil responses to a change in spatial structure or colour are almost identical, but both are ca. 40 ms slower than those to a change in light flux, which are thought to depend largely on subcortical pathways. Manual reaction times to a change in spatial structure or colour, or to the onset of coherent movement, differ reliably, and all are longer than the reaction time to a change in light flux. On average, observers take 184 ms to detect a change in light flux, 6 ms more to detect the onset of a grating, 30 ms more to detect a change in colour, and 37 ms more to detect the onset of coherent motion. The pattern of latency variation for pupil responses and reaction times suggests that the mechanisms that trigger the responses lie at different levels in cortex. Given our present knowledge of visual cortical organization, the long reaction time to the change in motion is surprising. The range of reaction times across different stimuli is consistent with decisions about the onset of a grating being made in V1 and decisions about the change in colour or change in motion being made in V4.  相似文献   

15.
Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8°) with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO). Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.  相似文献   

16.

Background

Observers respond more accurately to targets in visual search tasks that share properties with previously presented items, and transient attention can learn featural consistencies on a precue, irrespective of its absolute location.

Methodology/Principal Findings

We investigated whether such attentional benefits also apply to temporal consistencies. Would performance on a precued Vernier acuity discrimination task, followed by a mask, improve if the cue-lead times (CLTs; 50, 100, 150 or 200 ms) remained constant between trials compared to when they changed? The results showed that if CLTs remained constant for a few trials in a row, Vernier acuity performance gradually improved while changes in CLT from one trial to the next led to worse than average discrimination performance. The results show that transient attention can quickly adjust to temporal regularities, similarly to spatial and featural regularities. Further experiments show that this form of learning is not under voluntary control.

Conclusions/Significance

The results add to a growing literature showing how consistency in visual presentation improves visual performance, in this case temporal consistency.  相似文献   

17.
M Funakawa 《Spatial Vision》1989,4(4):267-274
Vernier thresholds were measured with a pair of vertical sinusoidal gratings of one and a half cycles as targets. The amplitude was weighted by a one-dimensional Gaussian and contrast was set one log unit above contrast threshold. The vernier thresholds were estimated with the method of constant stimuli. Temporal frequency effects were introduced by movement of the vernier targets. It was found that vernier thresholds expressed in phase angle were unchanged in the effective range of spatial frequencies provided that the temporal frequency and the visibility were unchanged, and that thresholds deteriorated by increasing the temporal frequency. It is suggested that the detection of relative phase may be involved in the discrimination of vernier offsets and that it may be mediated by a sustained unit. Three possible types of mechanisms, edge-localization processes, orientation-selective units and phase-sensitive units, were considered in relation to vernier acuity.  相似文献   

18.
D Regan 《Spatial Vision》1986,1(4):305-318
Some objects are perfectly camouflaged when stationary, but are clearly visible when moving; the boundaries of such an object are defined entirely by motion parallax. Little is known about the eye's ability to make spatial discriminations between motion-defined objects. In this study, subjects viewed a pseudo-random pattern of dots within which a camouflaged bar was made visible by relative motion of dots. Vernier acuity for the motion-defined bar was 27-45 sec arc for three subjects, much less than the interdot separation of 360 sec arc, much less than the 2 deg receptive field size for motion, and comparable with the foveal intercone separation of 30 sec arc. It is proposed that an opponent-orientation process and an opponent-position process can both contribute to vernier judgements for motion-defined objects. Real-world motion contrast commonly confounds the following cues for figure-ground segregation: (1) different texture velocities on either side of the figure's boundary; (2) in any given time interval, texture in figure and ground moves different distances; and (3) texture continually appears and disappears along the figure's boundary. When cues (2) and (3) were eliminated, thus ensuring figure-ground segregation was achieved entirely by motion-sensitive neural elements, vernier acuity was 44 +/- 5 sec arc compared with 36 +/- 8 sec arc for a dotted bar defined by luminance contrast. Conclusion: Vernier acuity for a dotted bar whose boundary was defined entirely by motion-sensitive neural elements was similar to vernier acuity for a dotted bar whose boundary was defined by luminance contrast.  相似文献   

19.
The visual acuity of seven midland banded water snakes was measured by recording evoked responses from telencephalon to temporally modulated square wave grating patterns. Using conventional electrophysiological techniques and signal averaging, high contrast square wave gratings of different spatial frequencies were presented. Acuity was estimated by extrapolating relative response amplitude/log10 spatial frequency functions which yielded an average acuity of 4.25 cycles/degree. Refractive state was also estimated by recording evoked potentials to intermediate spatial frequencies with different lenses in front of the eye. Polynomial fits indicated that under the experimental conditions the snakes were around 6.4 diopters hyperopic suggesting a corrected acuity of 4.89 cycles/degree. Reduction of grating luminance resulted in a reduction in evoked potential acuity measurements. These results indicate that the spatial resolution of midland banded water snakes is the equal of cat; about 20/120 in human clinical terms.  相似文献   

20.
An illusory contour is an image that is perceived as a contour in the absence of typical contour characteristics, such as a change in luminance or chromaticity across the stimulus. In cats and primates, cells that respond to illusory contours are sparse in cortical area V1, but are found in greater numbers in cortical area V2. We propose a model capable of illusory contour detection that is based on a realistic topographic organization of V1 cells, which reproduces the responses of individual cell types measured experimentally. The model allows us to explain several experimentally observed properties of V2 cells including variability in orientation tuning and inducer spacing preference. As a practical application, the model can be used to estimate the relationship between the severity of a cortical injury in the primary visual cortex and the deterioration of V2 cell responses to real and illusory contours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号