首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal structure of a papain-E-64 complex   总被引:1,自引:0,他引:1  
E-64 [1-[N-[(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl] amino]-4-guanidinobutane] is an irreversible inhibitor of many cysteine proteases. A papain-E-64 complex was crystallized at pH 6.3 by using the hanging drop method. Three different crystal forms grew in 3-7 days; the form chosen for structure analysis has space group P212121, with a = 42.91(4) A, b = 102.02(6) A, c = 49.73(2) A, and Z = 4. Diffraction data were measured to 2.4-A resolution, giving 9367 unique reflections. The papain structure was solved by use of the molecular replacement method, and then the inhibitor was located from a difference electron density map and fitted with the aid of a PS330 computer graphics system. The structure of the complex was refined to R = 23.3%. Our analysis shows that a covalent link is formed between the sulfur of the active-site cysteine 25 and the C-2 atom of the inhibitor. Contrary to earlier predictions, the E-64 inhibitor clearly interacts with the S subsites on the enzyme rather than the S' subsites, and papain's histidine 159 imidazole group plays a binding rather than a catalytic role in the inactivation process.  相似文献   

2.
Refined x-ray structure of papain.E-64-c complex at 2.1-A resolution.   总被引:2,自引:0,他引:2  
E-64-c, a synthetic cysteine protease inhibitor designed from E-64, binds to papain through a thioether covalent bond. The x-ray diffraction data for 2.1-A resolution were used to determine the three-dimensional structure of this complex and refined it to R = 0.159. 0.159. In the complex structure, the configurational conversion from S to R took place on the epoxy carbon of E-64-c, implying that the nucleophilic attack of the Cys-25 thiol group occurs at the opposite side of the epoxy oxygen atom. The leucyl and isoamylamide groups of E-64-c were strongly fixed to papain S subsites by specific interactions, including hydrogen bonding to the Gly-66 residue. The carboxyl-terminal anion of E-64-c formed an electrostatic interaction with the protonated His-159 imidazole ring (O-...HN+ = 3.76 A) and consequently prevented the participation of this residue in the hydrolytic charge-relay system. No significant distortion caused by the binding of E-64-c was shown in the secondary structure of papain. It is important to note that inhibitor and substrate have opposite binding modes for the peptide groups. The possible relationship between the binding mode and inhibitory activity is discussed on the basis of the crystal structure of this complex.  相似文献   

3.

Background

Actinidin, a protease from kiwifruit, belongs to the C1 family of cysteine proteases. Cysteine proteases were found to be involved in many disease states and are valid therapeutic targets. Actinidin has a wide pH activity range and wide substrate specificity, which makes it a good model system for studying enzyme–substrate interactions.

Methods

The influence of inhibitor (E-64) binding on the conformation of actinidin was examined by 2D PAGE, circular dichroism (CD) spectroscopy, hydrophobic ligand binding assay, and molecular dynamics simulations.

Results

Significant differences were observed in electrophoretic mobility of proteolytically active and E-64-inhibited actinidin. CD spectrometry and hydrophobic ligand binding assay revealed a difference in conformation between active and inhibited actinidin. Molecular dynamics simulations showed that a loop defined by amino-acid residues 88–104 had greater conformational mobility in the inhibited enzyme than in the active one. During MD simulations, the covalently bound inhibitor was found to change its conformation from extended to folded, with the guanidino moiety approaching the carboxylate.

Conclusions

Conformational mobility of actinidin changes upon binding of the inhibitor, leading to a sequence of events that enables water and ions to protrude into a newly formed cavity of the inhibited enzyme. Drastic conformational mobility of E-64, a common inhibitor of cysteine proteases found in many crystal structures stored in PDB, was also observed.

General significance

The analysis of structural changes which occur upon binding of an inhibitor to a cysteine protease provides a valuable starting point for the future design of therapeutic agents.  相似文献   

4.
On the basis of the crystal structures of papain complexed with the substrate analogue benzyloxycarbonyl-L-phenylalanyl-L-alanine chloromethyl-ketone (Drenth, J., Kalk, K.H., and Swen, H.M. (1976) Biochemistry 15, 3731-3738) and with the inhibitor E-64-c, the binding modes were compared at the atomic level to clarify the functional difference between the substrate and inhibitor. Irrespective of the reverse chemical bonding in the peptide bonds, both the molecules are located at the S subsites of papain with similar interactions. However, the inhibitory activity of E-64-c is characterized by the stereochemical function of a carboxyoxirane ring and the tight binding of the isopentylaminoleucyl side chain to the S subsites.  相似文献   

5.
Cysteine proteases are implicated in many regulatory and degradative processes in animal and plant cells. Many of the proteases are strongly inhibited by an irreversible inhibitor, trans-(epoxysuccinyl)-l-leucylamino-4-guanidinobutane (E-64) from Aspergillus japonicus. Here we report a method for purification of cysteine proteases by affinity chromatography on E-64. Attachment of the inhibitor to thiopropyl Sepharose through its epoxy group resulted in the loss of its irreversible activity but did not affect the specificity of interaction or its capability to bind cysteine proteases. Papain that served as a model cysteine protease was fully active after elution. We also provide evidence for purification of active proteases from a mixture of extracellular fluid of Botrytis cinerea- and Trichoderma harzianum-inoculated bean plants. Since the proteases are eluted with urea after the column is washed with 1 M NaCl, this procedure may provide highly efficient purification.  相似文献   

6.
Cathepsin C, a tetrameric lysosomal dipeptidyl-peptide hydrolase, is activated by chloride ion. The activation is shown here to be specific and pH-dependent, dissociation constants for chloride being lower at low pH. Bound chloride decreases the Km for the hydrolysis of chromophore labelled substrates without any significant change in Vmax, confirming its involvement in substrate binding. Determination of the kinetic parameters of chloride activation, using unlabelled substrates, has enabled its site of action to be located. The lower Km for the hydrolysis of simple amide substrates in the presence of Cl- shows that the S sites are involved. Possible involvement of the S' sites is excluded by the finding that the Km for the nucleophile in the transferase reaction is unaffected by chloride. The rates of inhibition by E-64 and iodoacetate are both chloride-dependent and, from the structure of the papain-E-64 complex, it is concluded that chloride binds close to the S2 site. The binding of guanidinium ion, a positively charged inhibitor, to the S site is dependent on chloride. Based on these results, a model is proposed to explain the chloride activation of cathepsin C. The possible physiological role of chloride in the regulation of proteolysis in the lysosome is discussed.  相似文献   

7.

Background  

This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK) and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI) of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition.  相似文献   

8.
Based on the crystal structure of the papain-E-64-c complex, 3-dimensional binding modes of a series of epoxysuccinyl amino acid derivatives to the papain active site have been constructed and the structure-inhibitory activity relationship has been analyzed using the accessible surface area and nonbonded energy parameters. The result indicates the importance of the hydrophobic interaction between the amino acid side chain of the inhibitor and the papain Val-157 residue for revealing the potent inhibitory activity.  相似文献   

9.
UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson’s disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketone inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 Å resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin’s C-terminal tail, thereby occupying the P1′ (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.  相似文献   

10.
The active sites of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2) display different reactivity characteristics to probes targeted at the active-site cysteine residue despite the close structural similarity of their active sites. The calculated electrostatic fields in the active-site clefts of actinidin and papain differ significantly and may explain the reactivity characteristics of these enzymes. Calculation of electrostatic potential also focuses attention on the electrostatic properties that govern formation of the active-site thiolate-imidazolium ion-pair. These calculations will guide the modification of the pH-activity profile of the cysteine proteinases by site-directed mutagenesis.  相似文献   

11.
Cathepsin S, a lysosomal cysteine protease of the papain superfamily, has been implicated in the preparation of MHC class II alphabeta-heterodimers for antigen presentation to CD4+ T lymphocytes and is considered a potential target for autoimmune-disease therapy. Selective inhibition of this enzyme may be therapeutically useful for attenuating the hyperimmune responses in a number of disorders. We determined the three-dimensional crystal structures of human cathepsin S in complex with potent covalent inhibitors, the aldehyde inhibitor 4-morpholinecarbonyl-Phe-(S-benzyl)Cys-Psi(CH=O), and the vinyl sulfone irreversible inhibitor 4-morpholinecarbonyl-Leu-Hph-Psi(CH=CH-SO(2)-phenyl) at resolutions of 1.8 and 2.0 A, respectively. In the structure of the cathepsin S-aldehyde complex, the tetrahedral thiohemiacetal adduct favors the S-configuration, in which the oxygen atom interacts with the imidazole group of the active site His164 rather than with the oxyanion hole. The present structures provide a detailed map of noncovalent intermolecular interactions established in the substrate-binding subsites S3 to S1' of cathepsin S. In the S2 pocket, which is the binding affinity hot spot of cathepsin S, the Phe211 side chain can assume two stable conformations that accommodate either the P2-Leu or a bulkier P2-Phe side chain. This structural plasticity of the S2 pocket in cathepsin S explains the selective inhibition of cathepsin S over cathepsin K afforded by inhibitors with the P2-Phe side chain. Comparison with the structures of cathepsins K, V, and L allows delineation of local intermolecular contacts that are unique to cathepsin S.  相似文献   

12.
Papain-like lysosomal cysteine proteases are processive and digestive enzymes that are expressed in organisms from bacteria to humans. Increasing knowledge about the physiological and pathological roles of cysteine proteases is bringing them into the focus of drug discovery research. These proteases have rather short active-site clefts, comprising three well defined substrate-binding subsites (S2, S1 and S1') and additional broad binding areas (S4, S3, S2' and S3'). The geometry of the active site distinguishes cysteine proteases from other protease classes, such as serine and aspartic proteases, which have six and eight substrate-binding sites respectively. Exopeptidases (cathepsins B, C, H and X), in contrast with endopeptidases (such as cathepsins L, S, V and F), possess structural features that facilitate the binding of N- and C-terminal groups of substrates into the active-site cleft. Other than a clear preference for free chain termini in the case of exopeptidases, the substrate-binding sites exhibit no strict specificities. Instead, their subsite preferences arise more from the specific exclusion of substrate types. This presents a challenge for the design of inhibitors to target a specific cathepsin: only the cumulative effect of an assembly of inhibitor fragments will bring the desired result.  相似文献   

13.
Papain from Carica papaya, an easily available cysteine protease, is the best-studied representative of this family of enzymes. The three dimensional structure of papain is very similar to that of other cysteine proteases of either plant (actinidin, caricain, papaya protease IV) or animal (cathepsins B, K, L, H) origin. As abnormalities in the activities of mammalian cysteine proteases accompany a variety of diseases, there has been a long-lasting interest in the development of potent and selective inhibitors for these enzymes. A covalent inhibitor of cysteine proteases, designed as a combination of epoxysuccinyl and peptide moieties, has been modeled in the catalytic pocket of papain. A number of its configurations have been generated and relaxed by constrained simulated annealing-molecular dynamics in water. A clear conformational variability of this inhibitor is discussed in the context of a conspicuous conformational diversity observed earlier in several solid-state structures of other complexes between cysteine proteases and covalent inhibitors. The catalytic pockets S2 and even more so S3, as defined by the pioneering studies on the papain-ZPACK, papain-E64c and papain-leupeptin complexes, appear elusive in view of the evident flexibility of the present inhibitor and in confrontation with the obvious conformational scatter seen in other examples. This predicts limited chances for the development of selective structure-based inhibitors of thiol proteases, designed to exploit the minute differences in the catalytic pockets of various members of this family. A simultaneous comparison of the three published proenzyme structures suggests the enzyme's prosegment binding loop-prosegment interface as a new potential target for selective inhibitors of papain-related thiol proteases.  相似文献   

14.
In order to elucidate the substrate specificity of the Sn subsites (n=1-3) of cathepsin B, its crystal structure inhibited by E64c [(+)-(2S,3S)-3-(1-[N-(3-methylbutyl)amino]-leucylcarbonyl)oxirane-2-carboxylic acid] was analyzed by the X-ray diffraction method. Iterative manual rebuilding and convenient conjugate refinement of structure decreased R- and free R-factors to 19.7% and to 23.9%, respectively, where 130 water molecules were included for the refinement using 14,759 independent reflections from 10 to 2.3 A resolution. The epoxy carbonyl carbon of E64c was covalently bonded to the Cys(29) S(gamma) atom and the remaining parts were located at Sn subsites (n=1-3). The substrate specificity of these subsites was characterized based on their interactions with the inhibitor. Base on these structural data, we developed a novel cathepsin B-specific noncovalent-type inhibitor, which may bind to S2'-S3. The molecular design of possessing structural elements of both CA074 and E64c, assisted by energy minimization and molecular dynamics (MD) simulation, may lead to a new lead noncovalent-type inhibitor.  相似文献   

15.
Blood coagulation is triggered by the formation of a complex between factor VIIa (FVIIa) and its cofactor, tissue factor (TF). The gamma-carboxyglutamic acid-rich domain of FVIIa docks with the C-terminal domain of TF, the EGF1 domain of FVIIa contacts both domains of TF, and the EGF2 domain and protease domain (PD) form a continuous surface that sits on the N-terminal domain of TF. Our aim was to investigate the conformational changes that occur in the sTF.PD binding region when different types of inhibitors, i.e., one active-site inhibitor (FFR-chloromethyl ketone (FFR)), two different peptide exosite inhibitors (E-76 and A-183), and the natural inhibitor tissue factor pathway inhibitor (TFPI), were allowed to bind to FVIIa. For this purpose, we constructed two sTF mutants (Q37C and E91C). By the aid of site-directed labeling technique, a fluorescent label was attached to the free cysteine. The sTF.PD interface was affected in position 37 by the binding of FFR, TFPI, and E-76, i.e., a more compact structure was sensed by the probe, while for position 91 located in the same region no change in the surrounding structure was observed. Thus, the active site inhibitors FFR and TFPI, and the exosite inhibitor E-76 have similar effects on the probe in position 37 of sTF, despite their differences in size and inhibition mechanism. The allosteric changes at the active site caused by binding of the exosite inhibitor E-76 in turn induce similar conformational changes in the sTF.PD interface as does the binding of the active site inhibitors. A-183, on the other hand, did not affect position 37 in sTF, indicating that the A-183 inhibition mechanism is different from that of E-76.  相似文献   

16.
Human leukocyte elastase (HLE) is a serine protease that contributes to tissue destruction in various disease states-for example, in emphysema. FR901277 is a natural product isolated from the culture filtrate of Streptomyces resistomicificus and is a potent inhibitor of both HLE and porcine pancreatic elastase (PPE). FR901277 consists of four normal amino acids and three unusual amino acids, and is a unique bicyclic peptide compound. The crystal structure of PPE complexed with FR901277 has been determined at 1.6 A resolution. The Ogamma atom of Ser-195 in PPE did not form a covalent bond with FR901277, but formed a hydrogen bond with the Nvarepsilon atom of His-57. On the other hand, the portion from L-Orn(1) through dehydroxyThr(3) in FR901277 formed an antiparallel beta-sheet structure with the backbone of the active site in PPE. The S4 through S2' binding subsites in PPE were all occupied by the hydrophobic side chains of the inhibitor molecule. Especially, the ethylidene moiety of FR901277 occupied the S1 specific pocket, indicating a CH/pi interaction. In addition, the isopropyl side chain of L-Val(7) was located at the enzyme surface between the S2 and S1' pockets with several van der Waals contacts. However, the amino acid (4) residue was not involved in a significant interaction with PPE. Comparison of inhibitor structures in different environments showed that FR901277 has a highly rigid bicyclic framework; however, it can slightly change its conformation according to the circumstances. The binding mode of FR901277 at the active site of PPE was directly applicable to that in HLE, after consideration of induced fit. The structure of the PPE-FR901277 complex provided much information regarding potential sites for modification of the physicochemical properties of FR901277.  相似文献   

17.
Caspase-3 is a prototypic executioner caspase that plays a central role in apoptosis. Aza-peptide epoxides are a novel class of irreversible inhibitors that are highly specific for clan CD cysteine proteases. The five crystal structures of caspase-3-aza-peptide epoxide inhibitor complexes reported here reveal the structural basis for the mechanism of inhibition and the specificities at the S1' and the S4 subsites. Unlike the clan CA cysteine proteases, the catalytic histidine in caspase-3 plays a critical role during protonation and subsequent ring opening of the epoxide moiety and facilitates the nucleophilic attack by the active site cysteine. The nucleophilic attack takes place on the C3 carbon atom of the epoxide and results in an irreversible alkylation of the active site cysteine residue. A favorable network of hydrogen bonds involving the oxyanion hole, catalytic histidine, and the atoms in the prime site of the inhibitor enhance the binding affinity and specificity of the aza-peptide epoxide inhibitors toward caspase-3. The studies also reveal that subtle movements of the N-terminal loop of the beta-subunit occur when the P4 Asp is replaced by a P4 Ile, whereas the N-terminal loop and the safety catch Asp179 are completely disordered when the P4 Asp is replaced by P4 Cbz group.  相似文献   

18.
15N NMR spectroscopy was used to examine the active-site histidyl residue of alpha-lytic protease in peptide boronic acid inhibitor complexes. Two distinct types of complexes were observed: (1) Boronic acids that are analogues of substrates form complexes in which the active-site imidazole ring is protonated and both imidazole N-H protons are strongly hydrogen bonded. With the better inhibitors of the class this arrangement is stable over the pH range 4.0-10.5. The results are consistent with a putative tetrahedral intermediate like complex involving a negatively charged, tetrahedral boron atom covalently bonded to O gamma of the active-site serine. (2) Boronic acids that are not substrate analogues form complexes in which N epsilon 2 of the active-site histidine is covalently bonded to the boron atom of the inhibitor. The proton bound to N delta 1 of the histidine in these histidine-boronate adducts remains strongly hydrogen bonded, presumably to the active-site aspartate. Benzeneboronic acid, which falls in this category, forms an adduct with histidine. In both types of complexes the N-H protons of His-57 exchange unusually slowly as evidenced by the room temperature visibility of the low-field 1H resonances and the 15N-H spin couplings. These results, coupled with the kinetic data of the preceding paper [Kettner, C. A., Bone, R., Agard, D. A., & Bachovchin, W. W. (1988) Biochemistry (preceding paper in this issue)], indicate that occupancy of the specificity subsites may be required to fully form the transition-state binding site. The significance of these findings for understanding inhibitor binding and the catalytic mechanism of serine proteases is discussed.  相似文献   

19.
Potent inhibitors of human cysteine proteases of the papain family have been made and assayed versus a number of relevant family members. We describe the synthesis of peptide alpha-ketoheterocyclic inhibitors that occupy binding subsites S1'-S3 of the cysteine protease substrate recognition cleft and that form a reversible covalent bond with the Cys 25 nucleophile. X-ray crystal structures of cathepsin K both unbound and complexed with inhibitors provide detailed information on protease/inhibitor interactions and suggestions for the design of tight-binding, selective molecules.  相似文献   

20.
At least two different protease pathways have been implicated in the degradation that is required to control the eukaryotic cell cycle; these two pathways center on the activities of ubiquitin/proteasome and cysteine protease. The proteasome inhibitors, lactacystin and AcLLnL and the cysteine protease inhibitor E-64-d were tested for their ability to inhibit the cell cycles of Xenopus embryos. Lactacystin, AcLLnL and E-64-d all caused the complete arrest of the cell cycle. To define the specific cell cycle processes that were affected by the two inhibitors, we performed a cytological analysis. Inhibition of the cell cycle by lactacystin and E-64-d occurred during prophase and metaphase. The number of cells that arrested in prophase was 1.4-times higher in the E-64-d-treated group than in the control group and the number of arrested cells in the lactacystin-treated group was 1.4-times higher than in the E-64-d-treated group. The number of cells that arrested in metaphase was 3-to-4-times higher in the E-64-d and lactacystin groups than in the control group. These results indicate that both cysteine protease(s) and proteasomes are involved in the prophase and metaphase stages of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号