首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed Escherichia coli strains containing mutations at two different loci, both originally selected for failure to support lambda site-specific recombination: himA and gyrB-him(Ts). Although the gyrB-him(Ts) mutations by themselves reduce supercoiling at high temperature, the double mutants show a far greater effect on supercoiling. Our studies show that growth of phage lambda is severely inhibited and that maintenance of plasmid pBR322 is extremely unstable in the double mutants. Physiological studies also reveal that the double mutants are isoleucine auxotrophs at 42 degrees C. The fact that himA mutants are isoleucine auxotrophs at 42 degrees C in the presence of leucine suggests that a significant component of the isoleucine auxotrophy of the double mutants is a result of the himA mutation. The himA gene encodes the alpha subunit of a protein called the integration host factor. Since mutations in the hip or himD gene encoding beta, the other subunit of the integration host factor, also result in isoleucine auxotrophy in the presence of leucine, we suggest that the integration host factor regulates the synthesis of at least one of the enzymes in the ilv pathway, acetohydroxyacid synthase I, which is encoded by the ilvB gene. Studies of the utilization of various sugars as the sole carbon source suggest that the integration host factor controls expression of some gene(s) involved in the utilization of xylose.  相似文献   

2.
We report the isolation of mutations in, and the characterization of, an Escherichia coli gene, hip, that is required for site-specific recombination of phage lambda. hip mutants are recessive and are located near minute 20 on the linkage map. The gene product is not vital to bacterial growth, since deletion mutants are viable. The absence of hip product reduces lambda integration to barely detectable levels and also reduces prophage excision, but less drastically. Certain mutations in the lambda int gene partially restore integration and excision in hip- hosts. Homologous recombination promoted by recA does not require hip function. In addition to their defect in site-specific recombination, hip mutants are unable to support lytic growth of phage Mu or of certain lambda mutants. Their pleiotropic phenotype closely resembles that of himA mutants, but complementation, mapping and DNA sequencing show that hip and himA are different genes.  相似文献   

3.
The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.  相似文献   

4.
Cells having the temperature-sensitive mutation groES131(Ts) were isolated from Escherichia coli K-12 strain C600T by thymineless death selection at 44 degrees C. This conditionally expressed mutation affected both cellular DNA and RNA syntheses at nonpermissive temperature, in addition to rendering cells unable to propagate phage lambda at permissive temperature.  相似文献   

5.
A set of Escherichia coli mutants deficient in intramolecular recombination and different from those previously found is described. All have temperature-sensitive lethal mutations. The mutants have been characterized with respect to the following properties: the Pap phenotype, deoxyribonucleic acid synthesis, sensitivity to ultraviolet light, ability to support the growth of phage lambda, filament formation, and mutation frequency.  相似文献   

6.
7.
Bacteriophage lambda requires the lambda O and P proteins for its DNA replication. The rest of the replication proteins are provided by the Escherichia coli host. Some of these host proteins, such as DnaK, DnaJ, and GrpE, are heat shock proteins. Certain mutations in the dnaK, dnaJ, or grpE gene block lambda growth at all temperatures and E. coli growth above 43 degrees C. We have isolated bacterial mutants that were shown by Southern analysis to contain a defective, mini-Tn10 transposon inserted into either of two locations and in both orientations within the dnaJ gene. We have shown that these dnaJ-insertion mutants did not grow as well as the wild type at temperatures above 30 degrees C, although they blocked lambda DNA replication at all temperatures. The dnaJ-insertion mutants formed progressively smaller colonies at higher temperatures, up to 42 degrees C, and did not form colonies at 43 degrees C. The accumulation of frequent, uncharacterized suppressor mutations allowed these insertion mutants to grow better at all temperatures and to form colonies at 43 degrees C. None of these suppressor mutations restored the ability of the host to propagate phage lambda. Radioactive labeling of proteins synthesized in vivo followed by immunoprecipitation or immunoblotting with anti-DnaJ antibodies demonstrated that no DnaJ protein could be detected in these mutants. Labeling studies at different temperatures demonstrated that these dnaJ-insertion mutations resulted in altered kinetics of heat shock protein synthesis. An additional eight dnaJ mutant isolates, selected spontaneously on the basis of blocking phage lambda growth at 42 degrees C, were shown not to synthesize DnaJ protein as well. Three of these eight spontaneous mutants had gross DNA alterations in the dnaJ gene. Our data provide evidence that the DnaJ protein is not absolutely essential for E. coli growth at temperatures up to 42 degrees C under standard laboratory conditions but is essential for growth at 43 degrees C. However, the accumulation of extragenic suppressors is necessary for rapid bacterial growth at higher temperatures.  相似文献   

8.
Salmonella typhi Vi typing phages were used to transduce temperature-sensitive (Ts) mutants of Salmonella typhi. Antibiotic resistance and Ts+ markers were transduced at high frequency (> 10(-4) per virulent phage). Several markers were cotransduced by phage Vi I, suggesting that it may be useful for mapping studies of the S. typhi genome.  相似文献   

9.
Recombination between short linear double-stranded DNA molecules and Escherichia coli chromosomes bearing the red genes of bacteriophage lambda in place of recBCD was tested in strains bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell; formation of Lac(-) chloramphenicol-resistant bacterial progeny was measured. Recombinant formation was found to be reduced in ruvAB and recQ strains. In this genetic background, mutations in recF, recO, and recR had large effects on both cell viability and on recombination. In these cases, deletion of the sulA gene improved viability and strain stability, without improving recombination ability. Expression of a gene(s) from the nin region of phage lambda partially complemented both the viability and recombination defects of the recF, recO, and recR mutants and the recombination defect of ruvC but not of ruvAB or recQ mutants.  相似文献   

10.
M Kimura  T Yura    T Nagata 《Journal of bacteriology》1980,144(2):649-655
Specialized transducing phage lambda (formula, see text) dnaA-2 was mutagenized, and two derivatives designated lambda (formula) dnaA17(Am) and lambda (formula) dnaA452(Am) were obtained. They did not transduce such mutations as dnaA46, dnaA167, and dnaA5 when an amber suppressor was absent, but they did so in the presence of an amber suppressor. By contrast, they transduced the dna-806 and tna-2 mutations in the absence of an active amber suppressor. The dna-806 and tna-2 mutations are known to be located very close to the dnaA gene, but in separate cistrons. When ultraviolet light-irradiated uvrB cells were infected with the derivative phages and proteins specified by them were analyzed by gel electrophoresis, a 50,000-dalton protein was found to be specifically missing if an amber suppressor was absent. This protein was synthesized when an amber suppressor was present. The dnaA17(Am) mutation on the transducing phage genome was then transferred by genetic recombination onto the chromosome of an Escherichia coli strain carrying a temperature-sensitive amber suppressor supF6(Ts), yielding a strain which was temperature sensitive for growth and deoxyribonucleic acid replication. The temperature-sensitive trait was suppressed by supD, supE, or supF. We conclude that, most likely, the derivative phages acquired amber mutations in the dnaA gene whose product is a 50,000-dalton protein as identified by gel electrophoretic analysis.  相似文献   

11.
The effects of the mutation pairs recB21 recF143 and recB21 uvrD152 on the frequency of genetic recombination were investigated in lambda phage-prophage crosses under homoimmune conditions. To prevent recombinants from being formed by the phage red system, these experiments were performed with phages and prophages carrying red and gam mutations. Both spontaneous and damage-induced recombination was measured, the phages being either undamaged or treated with trimethylpsoralen and 360-nm light to cross-link the phage DNA. Control and damaged phages were allowed to infect lysogenic host cells under conditions in which phage gene expression was repressed and phage DNA replication was blocked by lambda immunity. Although the double mutations recB21 recF143 and recB21 uvrD152 reduced recombination in Hfr by F- crosses to 0.3 to 0.02% of the wild-type controls, the presence of these pairs of mutations in the host lysogens had relatively little effect on the results of the phage-prophage crosses. In the latter system, recB21 recF143 reduced spontaneous and damaged-induced recombination by less than threefold whereas recB21 uvrD152 increased it to three times the wild-type level, the increase being attributable to the uvrD mutation. Evidently, the gene products of recB,C uvrD, and recF wee not needed for lambda phage-prophage recombination under repressed conditions.  相似文献   

12.
The specialized transducing phage lambda cysB (Borck et al., 1976) was found to carry about 5 kilobases of Escherichia coli DNA. It was shown to have an intact cysB gene but none of the known neighbouring genetic loci. The phage (which is known to be deficient in its site-specific recombination functions) was shown to integrate into the chromosome of bacterial recipients at the cysB locus. Excision from this site occasionally generated recombinant phages that had exchanged their cysB allele for the one originally present in the host. In this way lambda cysB derivatives were prepared from lysogens of two strains carrying the amber mutations cysB242 and cysB257; these phases were proved by several tests to contain the expected cysB amber mutations.  相似文献   

13.
Chieko Wada  Takashi Yura 《Genetics》1974,77(2):199-220
A temperature-sensitive DNA replication mutant of E. coli K-12 was isolated among the mutants selected for phenethyl alcohol resistance at low temperatures. This mutation, designated as dnaP18, affects sensitivity of the cell to phenethyl alcohol, sodium deoxycholate and rifampicin, presumably due to an alteration in the membrane structure. At high temperatures (e.g., 42 degrees ), synthesis of DNA, but not RNA or protein, is arrested, leading to the formation of "filaments" in which no septum formation is apparent. Nucleoids observed under electron microscope seem to become dispersed and DNA fibrils less condensed, which may explain the loss of viability under these conditions. Genetic analyses, including reversion studies, indicate that a recessive dnaP mutation located between cya and metE on the chromosome is responsible for both alterations of the membrane properties and temperature sensitivity. The dnaP18 mutation does not affect growth of phage T4 or lambda under conditions where host DNA replication is completely inhibited. Kinetic studies of DNA replication and cell division in this mutant after the temperature shift from 30 to 42 degrees , and during the subsequent recovery at 30 degrees , accumulated evidence suggesting that DNA replication comes to a halt at 42 degrees upon completion of a cycle already initiated before the temperature shift. Since the recovery of DNA synthesis after exposure to 42 degrees does not depend on protein or RNA synthesis or other energy-requiring processes, the product of the mutant dnaP gene appears to be reversibly inactivated at 42 degrees . Taken together with the recessive nature of the present mutation, it was suggested that one of the membrane proteins involved in initiation of DNA replication is affected in this mutant.  相似文献   

14.
Excisionase (Xis) is an accessory protein that is required for the excision of the related prophages lambda and HK022. Xis binds to two tandemly arranged binding sites (X1 and X2) on the P arm of the recombination sites attP and attR. Gel-retardation analyses and site-specific recombination assays were conducted on derivatives bearing site-directed mutations in the X1 and X2 sites of phage HK022. The results confirm the cooperative binding of Xis to its sites, showing that binding to X1 stimulates further binding to X2. The results also show that mutants affected in a single site are inactive in excision, whereas mutants affected in both sites, which show a complete absence of Xis binding, display significant excision activity. This restored activity is attributed to the interaction of Xis with Integrase, the protein that catalyzes the site-specific recombination reaction.  相似文献   

15.
HK022, a temperate coliphage related to lambda, forms lysogens by inserting its DNA into the bacterial chromosome through site-specific recombination. The Escherichia coli Fis and phage Xis proteins promote excision of HK022 DNA from the bacterial chromosome. These two proteins also act during lysogenization to prevent a prophage rearrangement: lysogens formed in the absence of either Fis or Xis frequently carried a prophage that had suffered a site-specific internal DNA inversion. The inversion is a product of recombination between the phage attachment site and a secondary attachment site located within the HK022 left operon. In the absence of both Fis and Xis, the majority of lysogens carried a prophage with an inversion. Inversion occurs during lysogenization at about the same time as prophage insertion but is rare during lytic phage growth. Phages carrying the inverted segment are viable but have a defect in lysogenization, and we therefore suggest that prevention of this rearrangement is an important biological role of Xis and Fis for HK022. Although Fis and Xis are known to promote excision of lambda prophage, they had no detectable effect on lambda recombination at secondary attachment sites. HK022 cIts lysogens that were blocked in excisive recombination because of mutation in fis or xis typically produced high yields of phage after thermal induction, regardless of whether they carried an inverted prophage. The usual requirement for prophage excision was bypassed in these lysogens because they carried two or more prophages inserted in tandem at the bacterial attachment site; in such lysogens, viable phage particles can be formed by in situ packaging of unexcised chromosomes.  相似文献   

16.
A temperature-sensitive dnaK mutant (strain MT112) was isolated from Escherichia coli B strain H/r30RT by thymineless death selection at 43 degrees C. By genetic mapping, the mutation [dnaK7(Ts)] was located near the thr gene (approximately 0.2 min on the may). E. coli K-12 transductants of the mutation to temperature sensitivity were assayed for their susceptibility to transducing phage lambda carrying the dnaK and/or the dnaJ gene. All of the transductants were able to propagate phage lambda carrying the dnaK gene. When macromolecular synthesis of the mutant was assayed at 43 degrees C, it was observed that both deoxyribonucleic acid and ribonucleic acid syntheses were severely inhibited. Thus, it was suggested that the conditionally defective dnaK mutation affects both cellular deoxyribonucleic acid and ribonucleic acid syntheses at the nonpermissive temperature in addition to inability to propagate phage lambda at permissive temperature.  相似文献   

17.
Mutants in T4 genes 46 and 47 exhibit early cessation of deoxyribonucleic acid (DNA) synthesis ("DNA arrest") and decreased synthesis of late proteins and phage. In addition, mutants in genes 46 and 47 fail to degrade host DNA to acidsoluble products. It is shown here that this complex phenotype can be partially suppressed by mutation of a T4 gene external to genes 46 and 47 which has been named das for "DNA arrest suppressor." The das mutations were discovered as third-site mutations in spontaneous pseudorevertants of [46, 47] mutants; the pseudorevertants make small plaques on Escherichia coli B, whereas [46, 47] mutants make none. The [das, 46, 47] triple mutant exhibits increased DNA, late protein, and viable phage production compared to the double mutant [46, 47]. The [das, 46, 47] mutant also degrades more of the host DNA to acid-soluble products than does the [46, 47] mutant. The suppressor effect of the das mutation appears to be gene-specific: it suppresses both amber and temperature-sensitive mutations in genes 46 and 47 and does not suppress amber mutations in any of the other genes tested. The [das] single mutants make normal-sized plaques on E. coli B and exhibit nearly normal host DNA degradation, DNA synthesis, late protein synthesis, and viable phage production. The das mutations either define a new gene between genes 33 and 34 or are special mutations within gene 33.  相似文献   

18.
There is disagreement in the literature as to whether the major mutagenic photoproduct induced in DNA by ultraviolet light is the cyclobutane dipyrimidine dimer, the most common product, or the [6-4] photoproduct, the next most frequent. In the experiments reported here, cyclobutane dimers were removed from irradiated lambda phage DNA by enzymatic photoreactivation, a process thought to affect no other photoproduct. Photoreactivation of lambda phage in host cells and of lambda DNA in solution reduced clear plaque mutants per plaque-forming unit by two-thirds, in host cells with a constant and near-maximal expression of the SOS functions required for mutagenesis. This result is interpreted to mean that removal of cyclobutane dimers in or near the mutated gene reduces mutation induced by ultraviolet light by two-thirds; therefore, cyclobutane dimers in the phage DNA are responsible for most observed mutations. DNA sequences of mutations in photoreactivated phage showed a smaller fraction of G.C to A.T transitions and a larger fraction of A.T to G.C transitions, compared to phage that were not photoreactivated. This suggests that cyclobutane dimers at TC and CC sites are particularly mutagenic.  相似文献   

19.
The integration host factor (IHF) of Escherichia coli is a small, basic protein that is required for lambda site-specific recombination and a variety of cellular processes. It is composed of two subunits, alpha and beta, that are encoded by the himA and hip (himD) genes, respectively. IHF is a sequence-specific DNA-binding protein and bends the DNA when it binds. We have used the bacteriophage P22-based challenge phage selection to isolate suppressor mutants with altered, expanded DNA binding specificities. The suppressors were isolated by selecting mutants that recognize variants of the phage lambda H'IHF recognition site. Two of the mutants recognize both the wild-type and a single variant site and contain amino acid substitutions at positions 64 (Pro to Leu) or 65 (Lys to Ser) of the alpha subunit. These substitutions are in a region of the protein that is predicted to contain a flexible arm that interacts with DNA. Three other mutants, which recognize the wild-type and a different variant site, contain amino acid substitutions at position 44 (Glu to Lys, Val or Gly) of the beta subunit. These substitutions are in the middle of a predicted beta-strand of the subunit. We discuss the possible mechanisms of suppression by the mutants in terms of a model of the IHF-DNA complex proposed by Yang and Nash [Cell, 57, 869-880 (1989)].  相似文献   

20.
We describe the identification of two mutations in bacterial genes, designated as fipB and fipC, which resulted in temperature-sensitive morphogenesis of bacteriophage f1. These mutations mapped at separate loci but had to be present simultaneously to block f1 production at 41.5 degrees C. One mutation defined the locus fipB at 85.3 min on the Escherichia coli linkage map; the other defined the locus fipC, which mapped very close to rpsL at 73 min. Since these mutations did not appear to affect phage DNA replication, gene expression, or protein localization, they probably interfered with the its life cycle at the level of assembly. fipB mutants were partially deficient in adsorption of bacteriophage lambda, and fipB and fipC mutants leaked beta-lactamase into the medium, suggesting that the mutations affect outer-membrane structure or function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号