首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extracts of Mycobacterium smegmatis, which was adapted to growth in synthetic medium containing D-arabinose as sole carbon source, catalyzed the NADPH-mediated reduction of D-arabinose to D-arabitol. When arabinose-adapted bacteria were transferred to glycerol medium, resumption of growth was accompanied by a sharp drop in the specific activity of this enzyme. Moreover, extracts of cells grown in D-arabinose medium contained large amounts of an NAD+-linked pentitol dehydrogenase, as compared to bacteria multiplying in glycerol medium. The specific activity of mycobacterial extracts was ten-fold higher for D-arabitol than for its L-isomer, and eight-fold higher than for xylitol (it was more than forty-fold lower in the case of glycerol-grown cells). The product of the pentitol dehydrogenase reaction was identified as D-xylulose by three different procedures. On the basis of these data, it is suggested that utilization of exogenous D-arabinose in mycobacteria involves two dehydrogenases that catalyze the reactions D-arabinose NADPH----D-arabitol NAD+----D-xylulose, by virtue of which an aldopentose is converted into a ketopentose. The alditol: NADP oxidoreductase was isolated from homogenates of D-arabinose-adapted mycobacteria, and purified by DEAE-cellulose chromatography. The enzymatic activity was restricted to a single band which, under denaturing conditions, comigrated with albumin (approximately 46 kDa). It was insensitive to 2-mercaptoethanol, EDTA and NaF, and was inactivated at 70 degrees C.  相似文献   

2.
Glycopeptidolipids (GPLs) are major components of the cell walls of several species of mycobacteria. We have isolated a transposon mutant of Mycobacterium smegmatis that is unable to synthesize mature GPLs and that displays a rough colony morphology. The disrupted gene, mtf1, shares a high degree of homology with several S-adenosylmethionine-dependent methyltransferases. The enzyme encoded by mtf1 is required for the methylation of a single rhamnose residue that forms part of the conserved GPL core structure. This conclusion is supported by the finding that (a) the mutant synthesized only GPLs with undermethylated (either mono- or nonmethylated instead of di- or trimethylated) rhamnose residues; (b) complementation of the mutant with a wild-type copy of mtf1 restored high levels of synthesis of GPLs containing di- and trimethylated rhamnose; and (c) S-adenosylmethionine-dependent methylation of rhamnosylated GPLs could be detected in cell lysates of wild-type cells and mtf1-complemented mutant cells, but not in mutant cells lacking intact mtf1. Structural analysis of wild-type and mutant GPLs suggests that disruption of mtf1 specifically inhibits addition of O-methyl groups to the 3 (or 2)-position of the rhamnose. In the absence of 3-O-methylation, further methylation of GPL rhamnose is apparently inhibited, and overall GPL synthesis is down-regulated by 90%.  相似文献   

3.
C H Lee 《Journal of bacteriology》1977,132(3):1031-1033
Cyclic adenosine 3',5'-monophosphate isolated from Mycobacterium smegmatis cells was identified by thin-layer chromatography, stepwise conversion to adenosine 5'-monophosphate and adenosine, ultraviolet absorption spectrum, phosphate analysis, and detection by two relatively specific radioisotopic methods.  相似文献   

4.
A mutant, T7, highly sensitive to oxidative stress as caused by diamide was isolated from a Mycobacterium smegmatis mc(2)155 transposon mutant library. While wild-type M. smegmatis is able to grow well on solid media supplemented with 10 mM diamide, T7 is only able to grow on solid media containing up to 1 mM diamide. This mutant is also sensitive to other thiol modifying agents such as iodoacetamide and chlorodinitrobenzene. By sequencing the genomic DNA flanking the transposon, T7 was found to be mutated in the region upstream of the homolog of M. tuberculosis Rv0274 open reading frame. Sequence analysis revealed that Rv0274 is a member of a superfamily of metalloenzymes comprising enzymes such as extradiol dioxygenases, glyoxalases, and fosfomycin resistant glutathione transferases. Cloning and epichromosomal expression of M. tuberculosis Rv0274 in the mutant resulted in complementation of the sensitivity to diamide.  相似文献   

5.
6.
We report here the molecular identification of a glucose permease from Mycobacterium smegmatis,a model organism for our understanding of the life patterns of the major pathogens Mycobacterium tuberculosis and Mycobacterium leprae. A computer-based search of the available genome of M. smegmatis mc(2) 155 with the sequences of well-characterized glucose transporters revealed the gene msmeg4187 as a possible candidate. The deduced protein belongs to the major facilitator superfamily of proton symporters and facilitators and exhibits up to 53% of amino acid identity to other members of this family. Heterologous expression of msmeg4187 in an Escherichia coli glucose-negative mutant led to the restoration of growth on glucose. The determination of the biochemical features characterize MSMEG4187 (GlcP) as a high affinity (K(m) of 19 microM), glucose-specific permease. The results represent the first molecular characterization of a sugar permease in mycobacteria, and thus supply fundamental data for further in-depth analysis on the nutritional lifestyle of these bacteria.  相似文献   

7.
T Parish  J Liu  H Nikaido    N G Stoker 《Journal of bacteriology》1997,179(24):7827-7833
A bacteriophage infection mutant (strain LIMP7) of Mycobacterium smegmatis was isolated following transposon mutagenesis. The mutant showed an unusual phenotype, in that all phages tested produced larger plaques on this strain compared to the parent strain. Other phenotypic characteristics of the mutant were slower growth, increased clumping in liquid culture, increased resistance to chloramphenicol and erythromycin, and increased sensitivity to isoniazid and several beta-lactam antibiotics. Permeability studies showed decreases in the accumulation of lipophilic molecules (norfloxacin and chenodeoxycholate) and a small increase with hydrophilic molecules (cephaloridine); taken together, these characteristics indicate an altered cell envelope. The DNA adjacent to the transposon in LIMP7 was cloned and was shown to be highly similar to genes encoding bacterial and mammalian inositol monophosphate phosphatases. Inositol is important in mycobacteria as a component of the major thiol mycothiol and also in the cell wall, with phosphatidylinositol anchoring lipoarabinomannan (LAM) in the cell envelope. In LIMP7, levels of phosphatidylinositol dimannoside, the precursor of LAM, were less than half of those in the wild-type strain, confirming that the mutation had affected the synthesis of inositol-containing molecules. The impA gene is located within the histidine biosynthesis operon in both M. smegmatis and Mycobacterium tuberculosis, lying between the hisA and hisF genes.  相似文献   

8.
Gene regulation by small RNAs (sRNAs) has been extensively studied in various bacteria. However, the presence and roles of sRNAs in mycobacteria remain largely unclear. Immunoprecipitation of RNA chaperone Hfq to enrich for sRNAs is one of the effective methods to isolate sRNAs. However, the lack of an identified mycobacterial hfq restricts the feasibility of this approach. We developed a novel method that takes advantage of the conserved inherent sRNAs-binding capability of heterologous Hfq from Escherichia coli to enrich sRNAs from Mycobacterium smegmatis, a model organism for studying Mycobacterium tuberculosis. We validated 12 trans-encoded and 12 cis-encoded novel sRNAs in M. smegmatis. Many of these sRNAs are differentially expressed at exponential phase compared with stationary phase, suggesting that sRNAs are involved in the growth of mycobacteria. Intriguingly, five of the cis-encoded novel sRNAs target known transposases. Phylogenetic conservation analysis shows that these sRNAs are pathogenicity dependent. We believe that our findings will serve as an important reference for future analysis of sRNAs regulation in mycobacteria and will contribute significantly to the development of sRNAs prediction programs. Moreover, this novel method of using heterologous Hfq for sRNAs enrichment can be of general use for the discovery of bacterial sRNAs in which no endogenous Hfq is identified.  相似文献   

9.
A specific trehalose phosphate phosphatase was purified approximately 50-fold from Mycobacterium smegmatis. The enzyme had a pH optimum of about 7.0 and was stimulated by Mg(2+). The optimum concentration of Mg(2+) was about 1.5 x 10(-3)m. Of other divalent cations tested, only Co(2+) showed some activity. The K(m) for trehalose phosphate was found to be about 1.5 x 10(-3)m. The enzyme showed slight activity toward mannose-6-P and fructose-6-P but was inactive on a large number of other phosphorylated compounds. Citrate was a competitive inhibitor of the enzyme both with respect to trehalose phosphate concentration and Mg(2+) concentration. This inhibition appears to be due to chelation of Mg(2+) by this compound. Ethylenediaminetetraacetic acid and NaF were also inhibitors of the enzyme, but these inhibitions were noncompetitive.  相似文献   

10.
The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy.  相似文献   

11.
Permeability of the cell wall of Mycobacterium smegmatis   总被引:10,自引:3,他引:7  
The cell wail of Mycobacterium smegmatis me2155 was shown to be an effective permeability barrier to hydrophilic compounds. Permeability coefficients to β-lactams ranged from 10 × 10 −7 to 0.5 × 10 −7 cm s−1. Cell wall proteins were solubilized with EDTA and Genapol and were tested for channel-forming activity by reconstitution into lipid bilayers. Proteins were able to induce a voltage-gated cation-selective channel. The mycobacterial porin channel appeared to be water-filled since the single-channel conductance followed the mobility sequence of hydrated ions in the aqueous phase. On the basis of the Renkin equation and the single-channel conductance, the channel diameter was estimated to be around 3 nm. Model calculations showed that cation selectivity may be caused by four negative point-charges at the channel mouth. The permeability properties of the cell wall of intact cells were in good agreement with those of the reconstituted channel. Negatively charged cephalosporins, cefamandole and cephalothin, diffused at a 10- to 20-fold lower rate than the zwitterionic cephaloridine. The mycobacterial porin represents a major hydrophilic pathway of the cell wall of M. smegmatis.  相似文献   

12.
Human placental and germ cell alkaline phosphatases (PLAP and GCAP, respectively), are characterized by their differential sensitivities to inhibition by L-leucine, EDTA, and heat. Yet, they differ by only 7 amino acids at positions 15, 67, 68, 84, 241, 254, and 429 within their respective 484 residues. To determine the structural basis and the amino acid(s) involved in these physicochemical differences, we constructed three GCAP mutants by site-directed mutagenesis and six GCAP/PLAP chimeras and then expressed these alkaline phosphatase mutants in COS-1 cells. We report that the differential reactivity of PLAP and GCAP depends critically on a single amino acid at position 429. GCAP with Gly-429 is strongly inhibited by L-leucine, EDTA, and heat, whereas PLAP with Glu-429 is resistant. By substituting Gly-429 of GCAP with a series of amino acids, we demonstrate that the relative sensitivities of these mutants to L-leucine, EDTA, and heat inhibition are, in general, parallel. Mutants in the order of resistance to these treatments are: Glu (most resistant), Asp/Ile/Leu, Gln/Val/Lys, Ser/His, and Arg/Thr/Met/Cys/Phe/Trp/Tyr/Pro/Asn/Ala/Gly (least resistant). However, the Ser-429 and His-429 mutants were more resistant to EDTA and heat inhibition than the wild-type GCAP, but were equally sensitive to L-leucine inhibition. Structural analysis of mammalian alkaline phosphatase modeled on the refined crystal structure of Escherichia coli alkaline phosphatase indicates that the negative charge of Glu-429 of PLAP, which simultaneously stabilizes the protein as a whole and the metal binding specifically, probably acts through interactions with the metal ligand His-320 (His-331 in E. coli alkaline phosphatase). Replacement of codon 429 with Gly in GCAP leads to destabilization and loosening of the metal binding. The data suggest that the natural binding site for L-leucine may be near position 429, with the amino and carboxyl groups of L-leucine interacting with bound phosphate and His-432 (His-412 in E. coli alkaline phosphatase), respectively.  相似文献   

13.
Five rough colony mutants of Mycobacterium smegmatis mc2155 were produced by transposon mutagenesis. The mutants were unable to synthesize glycopeptidolipids that are normally abundant in the cell wall of wild-type M. smegmatis. The glycopeptidolipids have a lipopeptide core comprising a fatty acid amide linked to a tetrapeptide that is modified with O-methylated rhamnose and O-acylated 6-deoxy talose. Compositional analysis of lipids extracted from the mutants indicated that the defect in glycopeptidolipid synthesis occurred in the assembly of the lipopeptide core. No other defects or compensatory changes in cell wall structure were detected in the mutants. All five mutants had transposon insertions in a gene encoding an enzyme belonging to the peptide synthetase family. Targeted disruption of the gene in the wild-type strain gave a phenotype identical to that of the five transposon mutants. The M. smegmatis peptide synthetase gene is predicted to encode four modules that each contain domains for cofactor binding and for amino acid recognition and adenylation. Three modules also have amino acid racemase domains. These data suggest that the common lipopeptide core of these important cell wall glycolipids is synthesized by a peptide synthetase.  相似文献   

14.

Background

Bacteria of the suborder Corynebacterineae include significant human pathogens such as Mycobacterium tuberculosis and M. leprae. Drug resistance in mycobacteria is increasingly common making identification of new antimicrobials a priority. Mycobacteria replicate intracellularly, most commonly within the phagosomes of macrophages, and bacterial proteins essential for intracellular survival and persistence are particularly attractive targets for intervention with new generations of anti-mycobacterial drugs.

Methodology/Principal Findings

We have identified a novel gene that, when inactivated, leads to accelerated death of M. smegmatis within a macrophage cell line in the first eight hours following infection. Complementation of the mutant with an intact copy of the gene restored survival to near wild type levels. Gene disruption did not affect growth compared to wild type M. smegmatis in axenic culture or in the presence of low pH or reactive oxygen intermediates, suggesting the growth defect is not related to increased susceptibility to these stresses. The disrupted gene, MSMEG_5817, is conserved in all mycobacteria for which genome sequence information is available, and designated Rv0807 in M. tuberculosis. Although homology searches suggest that MSMEG_5817 is similar to the serine:pyruvate aminotransferase of Brevibacterium linens suggesting a possible role in glyoxylate metabolism, enzymatic assays comparing activity in wild type and mutant strains demonstrated no differences in the capacity to metabolize glyoxylate.

Conclusions/Significance

MSMEG_5817 is a previously uncharacterized gene that facilitates intracellular survival of mycobacteria. Interference with the function of MSMEG_5817 may provide a novel therapeutic approach for control of mycobacterial pathogens by assisting the host immune system in clearance of persistent intracellular bacteria.  相似文献   

15.
Purine nucleoside phosphorylase (PNP) is an important enzyme in purine metabolism and cleaves purine nucleosides to their respective bases. Mycobacterial PNP is specific for 6-oxopurines and cannot account for the adenosine (Ado) cleavage activity that has been detected in M. tuberculosis and M. smegmatis cultures. In the current work, two Ado cleavage activities were identified from M. smegmatis cell extracts. The first activity was biochemically determined to be a phosphorylase that could reversibly catalyze adenosine + phosphate ↔ adenine + alpha-d-ribose-1-phosphate. Our purification scheme led to a 30-fold purification of this activity, with the removal of more than 99.9% of total protein. While Ado was the preferred substrate, inosine and guanosine were also cleaved, with 43% and 32% of the Ado activity, respectively. Our data suggest that M. smegmatis expresses two PNPs: a previously described trimeric PNP that can cleave inosine and guanosine only and a second, novel PNP (Ado-PNP) that can cleave Ado, inosine, and guanosine. Ado-PNP had an apparent Km (Km app) of 98 ± 6 μM (with Ado) and a native molecular mass of 125 ± 7 kDa. The second Ado cleavage activity was identified as 5′-methylthioadenosine phosphorylase (MTAP) based on its biochemical properties and mass spectrometry analysis. Our study marks the first report of the existence of MTAP in any bacterium. Since human cells do not readily convert Ado to Ade, an understanding of the substrate preferences of these enzymes could lead to the identification of Ado analogs that could be selectively activated to toxic products in mycobacteria.  相似文献   

16.
The SecA2 protein is part of a specialized protein export system of mycobacteria. We set out to identify proteins exported to the bacterial cell envelope by the mycobacterial SecA2 system. By comparing the protein profiles of cell wall and membrane fractions from wild-type and DeltasecA2 mutant Mycobacterium smegmatis, we identified the Msmeg1712 and Msmeg1704 proteins as SecA2-dependent cell envelope proteins. These are the first endogenous M. smegmatis proteins identified as dependent on SecA2 for export. Both proteins are homologous to periplasmic sugar-binding proteins of other bacteria, and both contain functional amino-terminal signal sequences with lipobox motifs. These two proteins appeared to be genuine lipoproteins as shown by Triton X-114 fractionation and sensitivity to globomycin, an inhibitor of lipoprotein signal peptidase. The role of SecA2 in the export of these proteins was specific; not all mycobacterial lipoproteins required SecA2 for efficient localization or processing. Finally, Msmeg1704 was recognized by the SecA2 pathway of Mycobacterium tuberculosis, as indicated by the appearance of an export intermediate when the protein was expressed in a DeltasecA2 mutant of M. tuberculosis. Taken together, these results indicate that a select subset of envelope proteins containing amino-terminal signal sequences can be substrates of the mycobacterial SecA2 pathway and that some determinants for SecA2-dependent export are conserved between M. smegmatis and M. tuberculosis.  相似文献   

17.
Dupont C  Murray A 《Microbios》2001,106(Z1):7-19
The phoA gene technology was used to investigate secreted proteins of the intracellular pathogen Mycobacteriumn avium subspecies paratuberculosis. This led to the identification of sodC, a gene which codes for a copper and zinc cofactored superoxide dismutase (Cu,ZnSOD) which has been implicated as a virulence factor for some pathogens. The predicted protein possessed a 76% identity with Cu,ZnSOD of Mycobacterium tuberculosis. To characterize Cu,ZnSOD from M. avium subspecies paratuberculosis, the gene was cloned and overexpressed in Escherichia coli. The renatured, affinity-purified recombinant protein possessed enzymatic activity that was inhibited by the presence of cyanide, which is characteristic of a Cu,ZnSOD.  相似文献   

18.
19.
20.
Mycobacterium tuberculosis and Mycobacterium smegmatis MutT1, MutT2, MutT3, and Rv3908 (MutT4) enzymes were screened for an antimutator role. Results indicate that both MutT1, in M. tuberculosis and M. smegmatis, and MutT4, in M. smegmatis, have that role. Furthermore, an 8-oxo-guanosine triphosphatase function for MutT1 and MutT2 is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号