首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
王卓  张万起 《生命科学》2007,19(1):73-77
芳香烃受体核转位蛋白(aryl hydrocarbon receptor nuclear translocator,ARNT)是碱性螺旋-环.螺旋转录因子超家族中新发现的PAS亚家族的成员之一。它是体内许多bHLH-PAS蛋白共同的专性配偶体,可以与芳香烃受体、低氧诱导因子、果蝇SIM蛋白等形成异二聚体并介导许多信号转导过程,从而使个体对环境污染物(如二恶英)、低氧状态等外界因素的改变产生相应的生物学效应,本文就ARNT的基本结构及其在体内的主要生理功能等方面作一综述。  相似文献   

3.
4.
The aryl hydrocarbon receptor repressor (AHRR) is a negative regulator of AH receptor (AHR), which mediates most of the toxic and biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR has been shown to be the major reason for the exceptionally wide (ca. 1000-fold) sensitivity difference in acute toxicity of TCDD between two rat strains, sensitive Long-Evans (Turku/AB) (L-E) and resistant Han/Wistar (Kuopio) (H/W), but there is another, currently unknown contributing factor involved. In the present study, we examined AHRR structure and expression in these rat strains to find out whether AHRR could be this auxiliary factor. Molecular cloning of AHRR coding region showed that consistent with AHRR proteins in other species, the N-terminal end of rat AHRR is highly conserved, but PAS B and Q-rich domains are severely truncated or lacking. Identical structures were recorded in both strains. Next, the time-, dose-, and tissue-dependent expression of AHRR was determined using quantitative real-time RT-PCR. In liver, AHRR expression was very low in untreated rats, but it increased rapidly after TCDD exposure (100microg/kg). Testis exhibited the highest constitutive expression of AHRR, whereas kidney, spleen, and heart showed the highest induction of AHRR in response to TCDD treatment. Again, no marked differences were found between H/W and L-E rats, implying that AHRR is not the auxiliary contributing factor to the strain difference in TCDD sensitivity. However, simultaneous measurement of CYP1A1 mRNA reinforced the view that AHRR is an important determinant of tissue-specific responsiveness to TCDD.  相似文献   

5.
Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, KATP channel activity and expression were reduced. Of two KATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses KATP channel and by so doing regulates glucose-dependent insulin secretion.  相似文献   

6.
The BP8 variant of the 5L rat hepatoma cell line is completely devoid of aryl hydrocarbon receptor (AHR) and is a useful model to examine AHR function. Previous studies showed that BP8 cells, when transfected with mouse AHR, exhibit induction of a plasmid-based reporter even in the absence of exogenous ligands. We transfected BP8 cells with full-length human AHR and found that presence of the AHR alone was sufficient to induce substantial CYP1A1 and CYP1B1 mRNA without any exogenous AHR ligand. An AHR antagonist, 3,4-dimethoxyflavone, inhibited CYP1A1 and CYP1B1 expression in a dose-dependent manner. When we transfected BP8 cells with a mutated human AHR that is defective in ligand binding, expression of CYP1A1 and CYP1B1 was diminished but not abolished. Inhibition by the AHR antagonist along with the diminished response to the mutated AHR indicates that BP8 cells contain some agent that acts as an agonist ligand for the AHR.  相似文献   

7.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of planar halogenated aromatic hydrocarbons (PHAHs). Bony fishes exposed to PHAHs exhibit a wide range of developmental defects. However, functional roles of fish AHR are not yet fully understood, compared with those of mammalian AHRs. To investigate the potential sensitivity to PHAHs toxic effects, an AHR cDNA was initially cloned and sequenced from red seabream (Pagrus major), an important fishery resource in Japan. The present study succeeded in identifying two highly divergent red seabream AHR cDNA clones, which shared only 32% identity in full-length amino acid sequence. The phylogenetic analysis revealed that one belonged to AHR1 clade (rsAHR1) and another to AHR2 clade (rsAHR2). The rsAHR1 encoded a 846-residue protein with a predicted molecular mass of 93.2 kDa, and 990 amino acids and 108.9 kDa encoded rsAHR2. In the N-terminal half, both rsAHR genes included bHLH and PAS domains, which participate in ligand binding, AHR/ARNT dimerization and DNA binding. The C-terminal half, which is responsible for transactivation, was poorly conserved between rsAHRs. Quantitative analyses of both rsAHRs mRNAs revealed that their tissue expression profiles were isoform-specific; rsAHR1 mRNA expressed primarily in brain, heart, ovary and spleen, while rsAHR2 mRNA was observed in all tissues examined, indicating distinct roles of each rsAHR. Furthermore, there appeared to be species-differences in the tissue expression profiles of AHR isoforms between red seabream and other fish. These results suggest that there are isoform- and species-specific functions in piscine AHRs.  相似文献   

8.
9.
Reproductive changes have been observed in painted turtles from a site with known contamination located on Cape Cod, MA, USA. We hypothesize that these changes are caused by exposure to endocrine-disrupting compounds and that genes involved in reproduction are affected. The aryl hydrocarbon receptor (AHR) is an orphan receptor that is activated by environmental contaminants. AHR mRNA was measured in turtles exposed to soil collected from a contaminated site. Adult turtles were trapped from the study site (Moody Pond, MP) or a reference site and exposed to laboratory environments containing soil from either site. The red-eared slider was used to assess neonatal exposure to soil and water from the sites. The environmental exposures occurred over a 13-month period. Juveniles showed an age-dependent increase in brain AHR1. Juvenile turtles exposed to the MP environment had elevated gonadal AHR1. Adult turtles exposed to the MP environment showed significantly decreased brain AHR2. The painted turtle AHR is the first complete reptile AHR cDNA sequence. Phylogenetic analysis of the painted turtle AHR showed that it clusters with other AHR2s. Partial AHR1 and partial AHR2 cDNA sequences were cloned from the red-eared slider. MEME analysis identified 18 motifs in the turtle AHRs, showing high conservation between motifs that overlapped functional regions in both AHR isoforms.  相似文献   

10.
Kodama S  Okada K  Inui H  Ohkawa H 《Planta》2007,227(1):37-45
In mammals, the aryl hydrocarbon receptor (AhR) mediates expression of certain genes, including CYP1A1, in response to exposure to dioxins and related compounds. We have constructed a mouse AhR-mediated gene expression systems for a β-glucuronidase (GUS) reporter gene consisting of an AhR, an AhR nuclear translocator (Arnt), and a xenobiotic response element (XRE)-driven promoter in transgenic tobacco plants. On treatment with the AhR ligands 3-methylcholanthrene (MC), β-naphthoflavone (βNF), and indigo, the transgenic tobacco plants exhibited enhanced GUS activity, presumably by inducible expression of the reporter gene. The recombinant AhR (AhRV), with the activation domain replaced by that of the Herpes simplex virus protein VP16, induced GUS activity much more than the wild-type AhR in the transgenic tobacco plants. Plants carrying AhRV expressed the GUS reporter gene in a dose- and time-dependent manner when treated with MC; GUS activity was detected at 5 nM MC on solid medium and at 12 h after soaking in 25 μM MC. Histochemical GUS staining showed that this system was active mainly in leaf and stem. These results suggest that the AhR-mediated reporter gene expression system has potential for the bioassay of dioxins in the environment and as a novel gene expression system in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Summary Immortalized human hepatocytes that can retain functions of drug-metabolizing enzymes would be useful for medical and pharmacological studies and for constructing an artificial liver. The aim of this study was to establish immortalized human hepatocyte lines having differentiated liver-specific functions. pSVneo deoxyribonucleic acid, which contains large and small T genes in the early region of simian virus 40, was introduced into hepatocytes that had been obtained from the liver of a 21-wk-old fetus. Neomycin-resistant immortalized colonies were cloned and expanded to mass cultures to examine hepatic functions. Cells were cultured in a chemically defined serum-free medium, ASF104, which contains no peptides other than recombinant human transferrin and insulin. As a result, an immortal human hepatocyte cell line (OUMS-29) having liver-specific functions was established from one of the 13 clones. Expression of CYP 1A1 and 1A2 messenger ribonucleic acid by the cells was induced by treatment with benz[a]pyrene, 3-methylcholanthrene, and benz[a]anthracene. OUMS-29 cells had both the polycyclic aromatic hydrocarbon receptor (AhR) and AhR nuclear translocator. Consequently, 7-ethoxyresorufin deethylase activity of the cells was induced time- and dose-dependently by these polycyclic aromatic hydrocarbons. This cell line is expected to be instrumental as an alternative method in animal experiments for studying hepatocarcinogenesis, drug metabolisms of liver cells, and hepatic toxicology.  相似文献   

12.
13.
14.
15.
16.
17.
Herein, we describe generation of the hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrd mouse line, which carries human functional CYP1A1 and CYP1A2 genes in the absence of mouse Cyp1a1 and Cyp1a2 genes, in a (>99.8%) background of the C57BL/6J genome and harboring the poor-affinity aryl hydrocarbon receptor (AHR) from the DBA/2J mouse. We have characterized this line by comparing it to our previously created hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrb1 line—which carries the same but has the high-affinity AHR of the C57BL/6J mouse. By quantifying CYP1A1 and CYP1A2 mRNA in liver, lung and kidney of dioxin-treated mice, we show that dose-response curves in hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrd mice are shifted to the right of those in hCYP1A1_1A2_Cyp1a1/1a2(−/−)_Ahrb1 mice—similar to, but not as robust as, dose-response curves in DBA/2J versus C57BL/6J mice. This new mouse line is perhaps more relevant than the former to human risk assessment vis-à-vis human CYP1A1 and CYP1A2 substrates, because poor-affinity rather than high-affinity AHR occurs in the vast majority of the human population.  相似文献   

18.
19.
The aryl hydrocarbon receptor (AhR) is best known as a mediator of toxicity of a diverse family of xenobiotic chemicals such as dioxins and PCBs. However, many naturally occurring compounds also activate AhR. One such compound, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), was isolated from tissue and found to be potent in preliminary tests [J. Song, M. Clagett-Dame, R.E. Peterson, M.E. Hahn, W.M. Westler, R.R. Sicinski, H.F. DeLuca, Proc. Natl. Acad. Sci. USA 99 (2002) 14694-14699]. We have synthesized ITE and [(3)H]ITE and further evaluated its AhR activity in several in vitro and in vivo assays in comparison with the toxic ligand, TCDD. AhR in Hepa1c1c7 cell cytosol bound [(3)H]ITE with high affinity and the AhR.ITE complex formed in vitro bound dioxin response element (DRE) oligonucleotide as potently as TCDD.AhR. In cells treated with ITE, nuclear translocation of AhR, and induction of CYP1A1 protein and of a DRE-dependent luciferase reporter gene were observed. ITE administered to pregnant DRE-LacZ transgenic mice activated fetal AhR, observed as X-gal staining in the same sites as in TCDD-treated mice. However, unlike TCDD, ITE did not induce cleft palate or hydronephrosis. TCDD but not ITE induced thymic atrophy in young adult mice, but both ITE and TCDD caused similar loss of cells and alterations of cell profiles in cultured fetal thymi. These data demonstrate that ITE is a potent AhR agonist in cell extracts, cultured cells, and intact animals, but does not cause the toxicity associated with the more stable xenobiotic ligand, TCDD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号