首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane Ca2+ leak remains the most uncertain of the cellular Ca2+ regulation pathways. During passive Ca2+ influx in non-stimulated smooth muscle cells, basal activity of constitutive Ca2+ channels seems to be involved. In vascular smooth muscle, the 3 following Ca2+ entry pathways contribute to this phenomenon: (i) via voltage-dependent Ca2+ channels, (ii) receptor gated Ca2+ channels, and (iii) store operated Ca2+ channels, although, in airway smooth muscle it seems only 2 passive Ca2+ influx pathways are implicated, one sensitive to SKF 96365 (receptor gated Ca2+ channels) and the other to Ni2+ (store operated Ca2+ channels). Resting Ca2+ entry could provide a sufficient amount of Ca2+ and contribute to resting intracellular Ca2+ concentration ([Ca2+]i), maintenance of the resting membrane potential, myogenic tone, and sarcoplasmic reticulum-Ca2+ refilling. However, further research, especially in airway smooth muscle, is required to better explore the physiological role of this passive Ca2+ influx pathway as it could be involved in airway hyperresponsiveness.  相似文献   

2.
Impairment in gallbladder emptying, increase in residual volume, and reduced smooth muscle contractility are hallmarks of acute acalculous cholecystitis and seem to be related to ischemia/reperfusion (I/R). This study was designed to determine the effects of tempol, a general antioxidant, on I/R-induced changes in gallbladder contractile capacity, the mechanisms involved in the contractile process, and the level of inflammatory mediators. Experimental gallbladder I/R was induced in male guinea pigs by common bile duct ligation for 2 days, then a deligation of the duct was performed and after 2 days the animals were sacrificed. A group of animals was treated with tempol, administered in the drinking water at 1 mmol/l for 10 days prior the bile duct ligation and until animal sacrifice. Isometric tension recordings showed that KCl and cholecystokinin-induced contractions were impaired by I/R, which correlated with decreased F-actin content and detrimental effects on Ca2+ influx. In addition, I/R depolarized mitochondrial membrane potential, as indicated by the reduction of the heterogeneity of the rhodamine123 fluorescence signal, and increased the expression of NF-κB, COX-2, and iNOS. Tempol treatment improved contractility via normalization of Ca2+ handling and improvement of F-actin content. Moreover, the antioxidant ameliorated mitochondrial polarity and normalized the expression levels of the inflammatory mediators. These results show that antioxidant treatment protects the gallbladder from I/R, indicating the potential therapeutic benefits of tempol in I/R injury.  相似文献   

3.
The effects of caffeine on cytoplasmic [Ca2+] ([Ca2+]i) and plasma membrane currents were studied in single gastric smooth muscle cells dissociated from the toad, Bufo marinus. Experiments were carried out using Fura-2 for measuring [Ca2+]i and tight-seal voltage-clamp techniques for recording membrane currents. When the membrane potential was held at -80 mV, in 15% of the cells studied caffeine increased [Ca2+]i without having any effect on membrane currents. In these cells ryanodine completely abolished any caffeine induced increase in [Ca2+]i. In the other cells caffeine caused both an increase in [Ca2+]i and activation of an 80-pS nonselective cation channel. In this group of cells ryanodine only partially blocked the increase in [Ca2+]i induced by caffeine; moreover, the change in [Ca2+]i that did occur was tightly coupled to the time course and magnitude of the cation current through these channels. In the presence of ryanodine, blockade of the 80-pS channel by GdCl3 or decreasing the driving force for Ca2+ influx through the plasma membrane by holding the membrane potential at +60 mV almost completely blocked the increase in [Ca2+]i induced by caffeine. Thus, the channel activated by caffeine appears to be permeable to Ca2+. Caffeine activated the cation channel even when [Ca2+]i was clamped to below 10 nM when the patch pipette contained 10 mM BAPTA suggesting that caffeine directly activates the channel and that it is not being activated by the increase in Ca2+ that occurs when caffeine is applied to the cell. Corroborating this suggestion were additional results showing that when the membrane was depolarized to activate voltage-gated Ca2+ channels or when Ca2+ was released from carbachol- sensitive internal Ca2+ stores, the 80-pS channel was not activated. Moreover, caffeine was able to activate the channel in the presence of ryanodine at both positive and negative potentials, both conditions preventing release of Ca2+ from stores and the former preventing its influx. In summary, in gastric smooth muscle cells caffeine transiently releases Ca2+ from a ryanodine-sensitive internal store and also increases Ca2+ influx through the plasma membrane by activating an 80- pS cation channel by a mechanism which does not seem to involve an elevation of [Ca2+]i.  相似文献   

4.
M Iino  H Kasai    T Yamazawa 《The EMBO journal》1994,13(21):5026-5031
The intermittent rise in intracellular Ca2+ concentration ([Ca2+]i oscillation) has been observed in many types of isolated cells, yet it has not been demonstrated whether it plays an essential role during nerve stimulation in situ. We used confocal microscopy to study Ca2+ transients in individual smooth muscle cells in situ within the wall of small arteries stimulated with perivascular sympathetic nerves or noradrenaline. We show here that the sympathetic adrenergic regulation of arterial smooth muscle cells involves the oscillation of [Ca2+]i that propagates within the cell in the form of a wave. Ca2+ release from intracellular stores plays a key role in the oscillation because it is blocked after the store depletion by ryanodine treatment. Ca2+ influx through the plasma membrane sustains the oscillation by replenishing the Ca2+ stores. These results demonstrate the involvement of [Ca2+]i oscillations in the neural regulation of effector cells within the integrated system.  相似文献   

5.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

6.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in A10 smooth muscle cells was explored by using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 of 20 microM. External Ca2+ removal reduced the Ca2+ signal by 75%. Addition of 3 mM Ca2+ increased [Ca2+]i in cells pretreated with fendiline in Ca2+-free medium. The 50 microM fendiline-induced [Ca2+]i increase in Ca2+-containing medium was inhibited by 10 microM of La3+, nifedipine, or verapamil. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store partly inhibited 50 microM fendiline-induced Ca2+ release; whereas pretreatment with 50 microM fendiline abolished 1 microM thapsigargin-induced Ca2+ release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 50 microM fendiline-induced Ca2+ release. Incubation with 50 microM fendiline for 10-30 min decreased cell viability by 10-20%. Together, the findings indicate that in smooth muscle cells fendiline induced [Ca2+]i increases. Fendiline acted by activating Ca2+ influx via L-type Ca2+ channels, and by releasing internal Ca2+ in a phospholipase C-independent manner. Prolonged exposure of cells to fendiline induced cell death.  相似文献   

7.
Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca2+] owing to either Ca2+ influx through voltage-gated Ca2+ channels of the plasmalemma or receptor-mediated Ca2+ release from the sarcoplasmic reticulum (SR). We show that voltage-gated Ca2+ channels in arterial myocytes mediate fast Ca2+ release from the SR and contraction without the need of Ca2+ influx. After sensing membrane depolarization, Ca2+ channels activate G proteins and the phospholipase C-inositol 1,4,5-trisphosphate (InsP3) pathway. Ca2+ released through InsP3-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca2+ signal. These observations demonstrate a new mechanism of signaling SR Ca(2+)-release channels and reveal an unexpected function of voltage-gated Ca2+ channels in arterial myocytes. Our findings may have therapeutic implications as the calcium-channel-induced Ca2+ release from the SR can be suppressed by Ca(2+)-channel antagonists.  相似文献   

8.
Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).  相似文献   

9.
This study investigated whether inflammation modulates the mobilization of Ca(2+) in canine colonic circular muscle cells. The contractile response of single cells from the inflamed colon was significantly suppressed in response to ACh, KCl, and BAY K8644. Methoxyverapamil and reduction in extracellular Ca(2+) concentration dose-dependently blocked the response in both normal and inflamed cells. The increase in intracellular Ca(2+) concentration in response to ACh and KCl was significantly reduced in the inflamed cells. However, Ca(2+) efflux from the ryanodine- and inositol 1,4, 5-trisphosphate (IP(3))-sensitive stores, as well as the decrease of cell length in response to ryanodine and IP(3), were not affected. Heparin significantly blocked Ca(2+) efflux and contraction in response to ACh in both conditions. ACh-stimulated accumulation of IP(3) and the binding of [(3)H]ryanodine to its receptors were not altered by inflammation. Ruthenium red partially inhibited the response to ACh in normal and inflamed states. We conclude that the canine colonic circular muscle cells utilize Ca(2+) influx through L-type channels as well as Ca(2+) release from the ryanodine- and IP(3)-sensitive stores to contract. Inflammation impairs Ca(2+) influx through L-type channels, but it may not affect intracellular Ca(2+) release. The impairment of Ca(2+) influx may contribute to the suppression of circular muscle contractility in the inflamed state.  相似文献   

10.
The effects of dibasol on spontaneous electrical and contractile activities as well as on the reactions evoked by hyperkalemic solution and noradrenaline were studied in smooth muscle of rabbit portal vein. It was shown that dibasol blocked the potential-operated influx Ca2+ into smooth muscle cells. The noninactivating calcium channels were found to be more sensitive to dibasol than inactivating ones. Significant part of the tonic contraction induced by noradrenaline was resistant to dibasol suggesting its weak effect on Ca2+ influx through calcium channels operated by alpha 1-adrenoceptors. It is supposed that vasodilative effect of dibasol is associated with blocking the influx Ca2+ through potential-operated noninactivating calcium channels into smooth muscle cells.  相似文献   

11.
Elevation of cytosolic Ca2+ in response to depolarization and various receptor agonists was measured in several types of cultured smooth muscle cells (DDT1, A10, rabbit aorta) loaded with the either quin-2 or fura-2, and assayed either in suspension or in monolayer cultures attached to plastic cover slips. Agonists (norepinephrine, vasopressin) induced both the release of intracellular Ca2+ and the influx of extracellular Ca2+. Agonist-induced Ca2+ influx was not blocked by dihydropyridines, and depolarization did not induce Ca2+ influx. However, in fura-2 loaded monolayers of PC12 cells, depolarization did induce dihydropyridine-sensitive Ca2+ influx. Thus cultured smooth muscle cells appear to express receptor-operated Ca2+ channels, but not functional voltage-operated Ca2+ channels.  相似文献   

12.
Changes in intracellular calcium concentration ([Ca2+]i) in smooth muscle cells play the key role in regulation of vascular smooth muscle tone and pathogenesis of cerebral vasospasm. In this study, we adopted the confocal laser microscopy to detect the fluorescence signals arising from the individual smooth muscle cells of canine basilar artery. Ring preparations were made, loaded with fluo-3 and changes in fluorescence induced by high K+ and endothelin-1 (ET-1) were measured by confocal laser microscopy. In some unstimulated smooth muscle cells Ca2+ waves arising from discrete region of the cell propagated to the whole cell with a velocity of approximately 10 microm/s. High K+ (80 mmol/L) induced a rapid rise in [Ca2+]i, the peak level being consistently reached approximately 10 s after stimulation. In contrast, the time to peak level of [Ca2+]i induced by ET-1 (0.3 micromol/L) varied widely between 13 and 26 s among individual cells, an indication that the extent of nonuniform coordination of increases in [Ca2+]i in individual cells may be partly responsible for the different time courses of tension development of vascular smooth muscle in response to the vasoactive stimulants. The increase in [Ca2+]i induced by ET-1 was transient but a pronounced and sustained contraction developed further in response to ET-1. Thus ET-1 has a biological property as a potential candidate to elicit cerebral vasospasm. Confocal laser microscopy could be a useful tool to measure the changes in [Ca2+]i in individual smooth muscle cells of cerebral artery.  相似文献   

13.
14.
S-Nitrosothiols (S-nitrosocysteine, S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine), which belong to the group of endothelium-derived relaxing factors (EDRFs), caused decreases of cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat vascular smooth muscle cells (VSMCs). The endothelin-1 (ET-1)-induced sustained increase of [Ca2+]i in rat VSMCs was completely abolished by preaddition of at least an equal molar quantity of S-nitrosocysteine (Cys-SNO). Also exposure of VSMCs to a mixture of Cys-SNO and ET-1 at the same time resulted in the transient increase only. These results suggest that S-nitrosothiols may have no significant effect on ET-1-induced Ca2+ release from intracellular stores via inositol 1,4,5-triphosphate production but do affect Ca2+ influx through Ca2+ channels in the plasma membrane.  相似文献   

15.
Using the fluorescence indicator, quin2, we compared the cytoplasmic Ca2+ concentration ([Ca2+]i) of cultured myotubes obtained from control subjects and myotonic dystrophy (MyD) patients. In Ca2(+)-free buffer the [Ca2+]i of the cultured MyD muscle cells was not significantly different from that of the control cells. In the presence of 1 mM external Ca2+ the cultured MyD muscle cells showed a significantly higher [Ca2+]i, which was due to the influx of Ca2+ through voltage-operated nifedipine-sensitive Ca2+ channels. In the presence of external Ca2+, MyD myotubes did not respond to acetylcholine, whereas control myotubes showed a transient increase in [Ca2+]i after addition of acetylcholine. This increase was inhibited by the addition of nifedipine. The differences in Ca2(+)-homeostasis between cultured MyD muscle cells and control cells were not due to differences in the resting membrane potential or the inability of the MyD cells to depolarize as a response to acetylcholine. Therefore, cultured MyD muscle cells exhibit altered nifedipine-sensitive voltage-operated channels which are active under conditions in which they are normally present in the inactive state, and which are unable to respond to depolarization caused by acetylcholine.  相似文献   

16.
Fluctuations in intracellular calcium concentration ([Ca2+]i) constitute the main link in excitation-contraction coupling (E-C coupling) in airway smooth muscle cells (ASMC). It has recently been reported that ACh induces asynchronous recurring Ca2+ waves in intact ASMC of murine bronchioles. With the use of a novel technique allowing us to simultaneously measure subcellular [Ca2+]i and force generation in ASMC located within an intact tracheal muscle bundle, we examined a similar pattern of Ca2+ signaling in the trachea. We found that application of ACh resulted in the generation of recurring intracellular Ca2+ waves progressing along the longitudinal axis of the ribbon-shaped intact ASMC. These Ca2+ waves were not synchronized between neighboring cells, and induction of wave-like [Ca2+]i oscillations was temporally associated with development of force by the tracheal muscle bundle. By comparing the concentration dependence of force generation and the parameters characterizing the [Ca2+]i oscillations, we found that the concentration-dependent increase in ACh-induced force development by the tracheal smooth muscle bundle is achieved by differential recruitment of intact ASMC to initiate Ca2+ waves and by enhancement in the frequency of [Ca2+]i oscillations and elevation of interspike [Ca2+]i once the cells are recruited. Our findings demonstrate that asynchronous recurring Ca2+ waves underlie E-C coupling in ACh-induced contraction of the intact tracheal smooth muscle bundle. Furthermore, in contrast to what was reported in enzymatically dissociated ASMC, Ca2+ influx through the L-type voltage-gated Ca2+ channel was not an obligatory requirement for the generation of [Ca2+]i oscillations and development of force in ACh-stimulated intact ASMC.  相似文献   

17.
1. We determined the cytoplasmic Ca2+ concentration ([Ca2+]i) in cultured human muscle cells using the fluorescent indicator Quin-2. 2. The [Ca2+]i was dependent on the external Ca2+ concentration. Acetylcholine in the presence of external Ca2+ caused a transient increase in [Ca2+]i. Inhibition by nifedipine indicated that this response was mediated through activated voltage-operated channels. In nominally Ca2(+)-free buffer acetylcholine did not markedly increase [Ca2+]i. Therefore, the increase in [Ca2+]i as a response to depolarization is mainly due to influx of external Ca2+. 3. Various concentrations of caffeine did not influence the [Ca2+]i. Dantrolene decreased [Ca2+]i, both in the presence and absence of external Ca2+. The reduction probably resulted from an action of dantrolene on the intracellular Ca2+ stores, since dantrolene did not influence 45Ca2+ influx or efflux and caffeine partially counteracted the reduction.  相似文献   

18.
Cytoplasmic calcium increments in the absence of sarco (endo) plasmic reticulum function were measured with a low-affinity fluorophore Indo-1FF in single isolated smooth muscle cells from guinea-pig urinary bladder. To evaluate the Ca(2+)-buffering properties of the myoplasm, Ca2+ influx, measured as time integral of the Ica (integral of Ica), was compared with corresponding free Ca2+ increments (delta [Ca2+]i) in the cytoplasm. The ratio between integral of ICa and delta [Ca2+]i (integral Ica/delta [Ca2+]i), reflecting the Ca2+ buffering properties of the cytosol, was in the range of 4.9-9.3 pC/microM (mean 6.2 +/- 1.2, n = 12). It remained approximately constant (6.4 +/- 1.4 pC/microM, n = 8) during recordings lasting up to 25 min, suggesting that cytoplasmic Ca2+ binding does not change markedly during cell dialysis and that the endogenous Ca2+ buffer is not significantly washed out of the cell through the patch pipette. Wash-in or wash-out of BAPTA, a mobile high-affinity Ca2+ buffer, into or from the cell markedly changed the relationship between Ca2+ influx through Ca2+ channels and delta [Ca2+]i within minutes. Changes in integral of ICa/delta [Ca2+]i during the sequence of depolarizing steps, which increased free [Ca2+]i up to 5 microM, suggested lower limits for the apparent affinity of a rapid Ca2+ buffer (16 microM) and for the total buffer concentration (530 microM). Introduction of 4 mM DPTA (Kd for Ca2+ = 81 microM) into the cell more than doubled the total cytoplasmic Ca2+ buffer capacity. These results suggest that cytoplasmic Ca2+ buffer in smooth muscle cells has a low affinity for free Ca2+. The Ca(2+)-binding ratio of the cytoplasm in most cells was estimated to be between 30 and 40. The Ca(2+)-binding ratio did not differ markedly between cells isolated from neonatal (< or = 5 days) and adult animals.  相似文献   

19.
Sphingolipids have a variety of important signaling roles in mammalian cells. We tested the hypothesis that certain sphingolipids and neutral sphingomyelinase (N-SMase) can regulate intracellular free magnesium ions ([Mg2+]i) in vascular smooth muscle (VSM) cells. Herein, we show that several sphingolipids, including C2-ceramide, C8-ceramide, C16-ceramide, and sphingosine, as well as N-SMase, have potent and direct effects on content and mobilization of [Mg2+]i in primary cultured rat aortic smooth muscle cells. All of these sphingolipid molecules increase, rapidly, [Mg2+]i in these vascular cells in a concentration-dependent manner. The increments of [Mg2+]i, induced by these agents, are derived from influx of extracellular Mg2+ and are extracellular Ca2+ concentration-dependent. Phospholipase C and Ca2+/calmodulin/Ca2+-ATPase activity appear to be important in the sphingolipid-induced rises of [Mg2+]i. Activation of certain PKC isozymes may also be required for sphingolipid-induced rises in [Mg2+]i. These novel results suggest that sphingolipids may be homeostatic regulators of extracellular Mg2+ concentration influx (and transport) and [Mg2+]i content in vascular muscle cells.  相似文献   

20.
The contractile sensitivity of smooth muscle to changes in myoplasmic [Ca2+] is dependent on the form of stimulation. Both myosin phosphorylation and force are less sensitive to increases in [Ca2+]i derived from Ca2+ entry through L-type Ca2+ channels than to increases in [Ca2+] induced by agents which release internal Ca2+ stores. We hypothesized that activation of receptor-operated channels should produce a [Ca2+]i sensitivity similar to that induced by opening L channels. Aequorin-estimated myoplasmic [Ca2+] and myosin light chain phosphorylation were measured in swine carotid media tissues stimulated with ATP, an activator of the only known receptor-operated cation channel in smooth muscle. ATP, via activation of a P2x purinergic receptor, induced large, transient increases in [Ca2+]i, yet only small transient elevations in phosphorylation or force. Rapid desensitization to ATP was partially, but not completely, caused by hydrolysis of ATP into adenosine since 1) alpha-beta-methylene ATP (a poorly hydrolyzable analog of ATP) produced larger, yet still transient increases in [Ca2+]i, phosphorylation, and force; 2) BW A1433U, a P1 (adenosine) receptor antagonist, enhanced ATP-induced contractions; and 3) ATP, but not alpha-beta-methylene ATP increased bath [adenosine]. The [Ca2+]i sensitivity of phosphorylation during P2x receptor activation was similar to that observed with KCl-depolarization-induced opening of L channels, supporting the hypothesis that transplasmalemmal Ca2+ influx produces less phosphorylation and force than mobilization of intracellular Ca2+ stores. Cumulative additions of higher alpha-beta-methylene ATP concentrations induced repeated transient contractions, indicative of an unusual form of receptor desensitization which could be explained if the affinity of the P2x receptor for ATP, but not the receptor number were rapidly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号