共查询到20条相似文献,搜索用时 0 毫秒
1.
Kawarazaki H Ando K Fujita M Matsui H Nagae A Muraoka K Kawarasaki C Fujita T 《American journal of physiology. Renal physiology》2011,300(6):F1402-F1409
Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress. 相似文献
2.
Ohsaki Y O'Connor P Mori T Ryan RP Dickinson BC Chang CJ Lu Y Ito S Cowley AW 《American journal of physiology. Renal physiology》2012,302(1):F95-F102
The mitochondria-rich epithelial cells of the renal medullary thick ascending limb (mTAL) reabsorb nearly 25% of filtered sodium (Na(+)) and are a major source of cellular reactive oxygen species. Although we have shown that delivery of Na(+) to the mTAL of rats increases superoxide (O(2)(·-)) production in mTAL, little is known about H(2)O(2) production, given the lack of robust and selective fluorescent indicators for determining changes within the whole cell, specifically in the mitochondria. The present study determined the effect of increased tubular flow and Na(+) delivery to mTAL on the production of mitochondrial H(2)O(2) in mTAL. H(2)O(2) responses were determined in isolated, perfused mTAL of Sprague-Dawley rats using a novel mitochondrial selective fluorescent H(2)O(2) indicator, mitochondria peroxy yellow 1, and a novel, highly sensitive and stable cytosolic-localized H(2)O(2) indicator, peroxyfluor-6 acetoxymethyl ester. The results showed that mitochondrial H(2)O(2) and cellular fluorescent signals increased progressively over a period of 30 min following increased tubular perfusion (5-20 nl/min), reaching levels of statistical significance at ~10-12 min. Responses were inhibited with rotenone or antimycin A (inhibitors of the electron-transport chain), polyethylene glycol-catalase and by reducing Na(+) transport with furosemide or ouabain. Inhibition of membrane NADPH-oxidase with apocynin had no effect on mitochondrial H(2)O(2) production. Cytoplasmic H(2)O(2) (peroxyfluor-6 acetoxymethyl ester) increased in parallel with mitochondrial H(2)O(2) (mitochondria peroxy yellow 1) and was partially attenuated (~65%) by rotenone and completely inhibited by apocynin. The present data provide clear evidence that H(2)O(2) is produced in the mitochondria in response to increased flow and delivery of Na(+) to the mTAL, and that whole cell H(2)O(2) levels are triggered by the mitochondrial reactive oxygen species production. The mitochondrial production of H(2)O(2) may represent an important target for development of more effective antioxidant therapies. 相似文献
3.
4.
目的:研究黄芪苷Ⅳ(AST)是否通过细胞外信号调节激酶1/2(ERK1/2)通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。方法:用200μmoL/L的H2O2处理细胞6h,采用MTT法检测细胞存活率,建立H2O2诱导的H9c2细胞氧化损伤模型;比色法测定细胞培养液中乳酸脱氢酶(LDH)活性、总超氧化物歧化酶(T—SOD)和锰超氧化物歧化酶(Mn—SOD)活力以及丙二醛(MDA)含量;Western blot检测H9c2细胞ERK1/2蛋白的磷酸化水平。结果:在H2O2浓度为200μmol/L作用6h条件下,细胞存活率降低程度适中,实验结果重复性好,确定后续实验采用200μmol/L H2O2作用6h建立模型。与H2O2组比较,10mg/L及20mg/L AST均显著提高细胞存活率(P〈0.01),使细胞培养液中LDH活性显著降低(P〈0.01),T—SOD及Mn—SOD活力显著提高(P〈0.01),MDA含量显著降低(P〈0.01)。10mg/L及20mg/L AST均显著增加H2O2损伤的H9c2细胞p—ERK1/2蛋白的表达(P〈0.01),当用PD98059(ERK1/2的抑制剂)预处理后,AST的作用则被取消。结论:黄芪苷Ⅳ可以通过ERK1/2通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。 相似文献
5.
AimsRecent studies suggested that nuclear factor kappa B (NF-κB) plays a key role in the pathogenesis of renal injury. This study investigated whether NF-κB inhibition attenuates progressive renal damage in aldosterone/salt-induced renal injury and its mechanisms.Main methodsAdult male rats were uninephrectomized and treated with one of the following for 4 weeks: vehicle (0.5% ethanol, subcutaneously); vehicle/1% NaCl (1% NaCl in drinking solution); aldosterone/1% NaCl (1% NaCl in drinking solution and aldosterone, 0.75 μg/h, subcutaneously); or aldosterone/1%NaCl + pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB (100 mg/kg/day, by gavage). The activity of NF-κB was measured by EMSA and immunohistochemistry, CTGF and ICAM-1 were measured by Western blot and real-time PCR, and TGF-β and CTGF were measured by immunohistochemistry.Key findingsRats that received aldosterone/1% NaCl exhibited hypertension and severe renal injury. Renal cortical mRNA levels of CTGF, TGF-β, ICAM-1 and collagen IV, protein expression of CTGF and ICAM-1, and NF-κB–DNA binding activity were significantly upregulated in rats that received aldosterone/1% NaCl. Treatment with PDTC significantly decreased the percentage of cells positive for CTGF and TGF-β; mRNA levels of CTGF, TGF-β, ICAM-1 and collagen IV, and protein levels of CTGF and ICAM-1 were also inhibited by PDTC.SignificanceThese data suggest that the NF-κB signal pathway plays a role in the progression of aldosterone/salt-induced renal injury. 相似文献
6.
7.
The rate of dark relaxation of the oxygen evolving system in chloroplasts is shown to depend on the value of the surface charge of some chloroplast membrane component having protein nature and isoelectric point at pH 6.0. The substitution of H2O for D2O leads to isoelectric point shift of this protein. 相似文献
8.
We encapsulated a purified and concentrated hemoglobin (Hb) solution with a phospholipid bilayer membrane to form Hb vesicles (particle diameter, ca. 250 nm) for the development of artificial oxygen carriers. Reaction of Hb inside the vesicle with hydrogen peroxide (H(2)O(2)) is one of the important safety issues to be clarified and compared with a free Hb solution. During the reaction of the Hb solution with H(2)O(2), metHb (Fe(III)) and ferrylHb (Fe(IV)=O) are produced, and H(2)O(2) is decomposed by the catalase-like reaction of Hb. The aggregation of discolored Hb products due to heme degradation is accompanied by the release of iron (ferric ion). On the other hand, the concentrated Hb within the Hb vesicle reacts with H(2)O(2) that permeated through the bilayer membrane, and the same products as the Hb solution are formed inside the vesicle. However, there is no turbidity change, no particle diameter change of the Hb vesicles, and no peroxidation of lipids comprising the vesicles after the reaction with H(2)O(2). Furthermore, no free iron is detected outside the vesicle, though ferric ion is released from the denatured Hb inside the vesicle, indicating the barrier effect of the bilayer membrane against the permeation of ferric ion. When vesicles composed of egg york lecithin (EYL) as unsaturated lipids are added to the mixture of Hb and H(2)O(2), the lipid peroxidation is caused by ferrylHb and hydroxyl radical generated from reaction of the ferric iron with H(2)O(2), whereas no lipid peroxidation is observed in the case of the Hb vesicle dispersion because the saturated lipid membrane of the Hb vesicle should prevent the interaction of the ferrylHb or ferric iron with the EYL. 相似文献
9.
Kim YH Hwang JH Noh JR Gang GT Tadi S Yim YH Jeoung NH Kwak TH Lee SH Kweon GR Kim JM Shong M Lee IK Lee CH 《Free radical biology & medicine》2012,52(5):880-888
NADPH oxidase (NOX) is a predominant source of reactive oxygen species (ROS), and the activity of NOX, which uses NADPH as a common rate-limiting substrate, is upregulated by prolonged dietary salt intake. β-Lapachone (βL), a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), decreases the cellular NAD(P)H/NAD(P)(+) ratio via activation of NQO1. In this study, we evaluated whether NQO1 activation by βL modulates salt-induced renal injury associated with NOX-derived ROS regulation in an animal model. Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet were used to investigate the renoprotective effect of NQO1 activation. βL treatment significantly lowered the cellular NAD(P)H:NAD(P)(+) ratio and dramatically reduced NOX activity in the kidneys of HS diet-fed DS rats. In accordance with this, total ROS production and expression of oxidative adducts also decreased in the βL-treated group. Furthermore, HS diet-induced proteinuria and glomerular damage were markedly suppressed, and inflammation, fibrosis, and apoptotic cell death were significantly diminished by βL treatment. This study is the first to demonstrate that activation of NQO1 has a renoprotective effect that is mediated by NOX activity via modulation of the cellular NAD(P)H:NAD(P)(+) ratio. These results provide strong evidence that NQO1 might be a new therapeutic target for the prevention of salt-induced renal injury. 相似文献
10.
Jaques-Robinson KM Golfetti R Baliga SS Hadzimichalis NM Merrill GF 《Experimental biology and medicine (Maywood, N.J.)》2008,233(10):1315-1322
Here we report our ongoing investigation of the cardiovascular effects of acetaminophen, with emphasis on oxidation-induced canine myocardial dysfunction. The objective of the current study was to investigate whether acetaminophen could attenuate exogenous H(2)O(2)-mediated myocardial dysfunction in vivo. Respiratory, metabolic, and hemodynamic indices such as left ventricular function (LVDP and +/-dP/dt(max)), and percent ectopy were measured in anesthetized, open-chest dogs during intravenous administration of 0.88 mM, 2.2 mM, 6.6 mM H(2)O(2). Following 6.6 mM H(2)O(2), tissue from the left ventricle was harvested for electron microscopy. Left ventricular function did not vary significantly between vehicle and acetaminophen groups under baseline conditions. Acetaminophen-treated dogs regained a significantly greater fraction of baseline function after high concentrations of H(2)O(2) than vehicle-treated dogs. Moreover, the incidence of H(2)O(2)-induced ventricular arrhythmias was significantly reduced in the acetaminophen-treated group. Percent ectopy following 6.6 mM concentrations of H(2)O(2) was 1 +/- 0.3 vs. 0.3 +/- 0.1 (P < 0.05) for vehicle- and acetaminophen-treated dogs, respectively. Additionally, electron micrograph images of left ventricular tissue confirmed preservation of tissue ultrastructure in acetaminophen-treated hearts when compared to vehicle. We conclude that, in the canine myocardium, acetaminophen is both functionally cardioprotective and antiarrhythmic against H(2)O(2)-induced oxidative injury. 相似文献
11.
Effect of cytochrome c on the generation and elimination of O2*- and H2O2 in mitochondria 总被引:9,自引:0,他引:9
The primary recognized function of cytochrome c is to act as an electron carrier transferring electrons from complex III to complex IV in the respiratory chain of mitochondria. Recent studies on cell apoptosis reveal that cytochrome c is responsible for the programmed cell death when it is released from mitochondria to cytoplasm. In this study we present evidence showing that cytochrome c plays an antioxidative role by acting on the generation and elimination of O(2)(*) and H(2)O(2) in mitochondria. The O(2)(*) and H(2)O(2) generation in cytochrome c-depleted Keilin-Hartree heart muscle preparation (HMP) is 7-8 times higher than that in normal HMP. The reconstitution of cytochrome c to the cytochrome c-depleted HMP causes the O(2)(*) and H(2)O(2) generation to exponentially decrease. An alternative electron-leak pathway of the respiratory chain is suggested to explain how cytochrome c affects on the generation and elimination of O(2)(*) and H(2)O(2) in mitochondria. Enough cytochrome c in the respiratory chain is needed for keeping O(2)(*) and H(2)O(2) at a lower physiological level. A dramatic increase of O(2)(*) and H(2)O(2) generation occurs when cytochrome c is released from the respiratory chain. The burst of O(2)(*) and H(2)O(2), which happens at the same time as cytochrome c release from the respiratory chain, should have some role in the early stage of cell apoptosis. 相似文献
12.
Effect of NaCl stress on H2O2 metabolism in rice leaves 总被引:22,自引:0,他引:22
The effect of NaCl stress on H2O2 metabolismin detached rice leaves was studied. NaCl (200 mM)treatment did not cause the accumulation ofH2O2 and resulted in no increase in lipidperoxidation and membrane leakage of leaf tissues. The activities of peroxidase, ascorbate peroxidase,superoxide dismutase, and glutathione reductase wereobserved to be greater in NaCl-stressed rice leavesthan in control leaves. However, glycolate oxidasewas lower in NaCl-treated rice leaves than in thecontrol leaves. There was no difference in catalaseactivity between NaCl and control treatments. Theseresults suggest that some antioxidant enzymes can beactivated in response to oxidative stress induced byNaCl. 相似文献
13.
To explore the role of hydrogen peroxide (H2O2) in promoting polymorphonuclear neutrophils adherence and injury of human umbilical vein endothelial cells (HUVECs), the ordinary optical microscope and scanning electron microscopy were used to observe the adherence and injury after HUVECs co-cultured with neutrophils pretreated by extracellular H2O2 (HUVECs and neutrophils co-culture without H2O2 pretreatment as control), and the adhesion rates of neutrophils were measured through cell count test. The percentages of HUVECs expressing intercellular adhesion molecule 1 (ICAM-1) and Apo2.7 were detected by flow cytometry. After being cocultured with the neutrophils pretreated by extracellular H2O2, HUVECs showed obvious injury changes, such as round or oval shape, shortened or disappeared microvilli, and membrane structural damage; The adhesion rate of neutrophils was (57.74 ± 9.18)%, which was significantly higher than that in control [(23.12 ± 6.43)%, P < 0.01, n = 8]; The percentages of HUVECs expressing ICAM-1 and Apo2.7 were (44.69 ± 1.52)% and (39.29 ± 1.81)% respectively, which were significantly higher than those in control [(21.79 ± 1.43)% and (9.79 ± 1.43)%] (P < 0.01, n = 8). The results suggest that extracellular H2O2 can promote the neutrophils adherence and injury of HUVECs. 相似文献
14.
Servais S Couturier K Koubi H Rouanet JL Desplanches D Sornay-Mayet MH Sempore B Lavoie JM Favier R 《Free radical biology & medicine》2003,35(1):24-32
Previous data have demonstrated that, to handle the oxidative stress encountered with training at high intensity, skeletal muscle relies on an increase in mitochondrial biogenesis, a reduced H(2)O(2) production, and an enhancement of antioxidant enzymes. In the present study, we evaluated the influence of voluntary running on mitochondrial O(2) consumption and H(2)O(2) production by intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) isolated from oxidative muscles in conjunction with the determination of antioxidant capacities. When mitochondria are incubated with succinate as substrate, both maximal (state 3) and resting (state 4) O(2) consumption were significantly lower in SSM than in IFM populations. Mitochondrial H(2)O(2) release per unit of O(2) consumed was 2-fold higher in SSM than in IFM. Inhibition of H(2)O(2) formation by rotenone suggests that complex I of the electron transport chain is likely the major physiological H(2)O(2)-generating system. In Lou/C rats (an inbred strain of rats of Wistar origin), neither O(2) consumption nor H(2)O(2) release by IFM and SSM were affected by long-term, voluntary wheel training. In contrast, glutathione peroxidase and catalase activity were significantly increased despite no change in oxidative capacities with long-term, voluntary exercise. Furthermore, chronic exercise enhanced heat shock protein 72 accumulation within skeletal muscle. It is concluded that the antioxidant status of muscle can be significantly improved by prolonged wheel exercise without necessitating an increase in mitochondrial oxidative capacities. 相似文献
15.
Mehul P Dixit Liping Xu Hua Xu Liqun Bai James F Collins Fayez K Ghishan 《生物化学与生物物理学报:生物膜》2004,1664(1):38-44
The purpose of the present study was to determine the effect of angiotensin II (A-II) on membrane expression of Na+/H+ exchange isoforms NHE3 and NHE2 in the rat renal cortex. A-II (500 ng/kg per min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. Arterial pressure and circulating plasma A-II level were significantly increased in A-II rats as compared to control rats. pH-dependent uptake of 22Na+ study in the presence of 50 μM HOE-694 revealed that Na+ uptake mediated by NHE3 was increased ∼88% in the brush border membrane from renal cortex of A-II-treated rats. Western blotting showed that A-II increased NHE3 immunoreactive protein levels in the brush border membrane of the proximal tubules by 31%. Northern blotting revealed that A-II increased NHE3 mRNA abundance in the renal cortex by 42%. A-II treatment did not alter brush border NHE2 protein abundance in the renal proximal tubules. In conclusion, chronic A-II treatment increases NHE3-mediated Na+ uptake by stimulating NHE3 mRNA and protein content. 相似文献
16.
17.
Tian N Gannon AW Khalil RA Manning RD 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,284(2):R372-R379
The goal of this study was to determine the role of renal medullary inducible nitric oxide synthase (iNOS) in the arterial pressure, renal hemodynamic, and renal excretory changes that occur in Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats during high Na intake. Forty R and S rats, equipped with indwelling arterial, venous, and renal medullary catheters, were subjected to high (8%) Na intake, and selective iNOS inhibition was achieved with continuous intravenous or renal medullary interstitial infusion of aminoguanidine (AG; 3.075 mg. kg(-1). h(-1)). After 5 days of AG, mean arterial pressure increased to 132 +/- 2% control in the S rats with high Na intake and intramedullary AG compared with 121 +/- 4% control (P < 0.05) in the S rats with high Na intake alone and 121 +/- 2% control (P < 0.05) in the S rats with high Na intake and intravenous AG. AG did not change arterial pressure in R rats. AG also caused little change in renal hemodynamics, urinary Na, or H(2)O excretion or ACh-induced aortic vasorelaxation in R or S rats. The data suggest that during high Na intake, nitric oxide produced by renal medullary iNOS helps to prevent excessive increases in arterial pressure in the Dahl S rat but not the R rat. 相似文献
18.
Summary Studies on the effects of pretreatment with aldosterone on the incorporation of3H leucine or3H methionine into proteins in renal slices were carried out in Joklik-modified minimal essential medium. Administration of aldosterone (2 g/100 g body wt) to adrenalectomized rats increased3H leucine incorporation into trichloroacetic acid insoluble fractions of crude homogenates of cortical slices by 15.5±0.4% and of medullary slices by 53.5±1.3%. No increase in isotope incorporation was observed in slices of renal papilla or spleen prepared from the same rats. Aldosterone had no effect on the3H-leucine content of the trichloroacetic acid-soluble fractions of all three renal zones and the spleen. The dose of aldosterone that elicited a half-maximal increase in3H-methionine incorporation into proteins of renal medullary slices (0.45 g of aldosterone/100 g body wt) was indistinguishable from that needed to elicit a halfmaximal increase in the urinary K+/Na+ ratio (0.35 g of aldosterone/100 g body wt). Dexamethasone, a potent glucocorticoid, at a dose of 0.8 g/100 g body wt did not augment3H-leucine incorporation into renal medullary proteins but was effective at 8 g/100 g body wt. Spirolactone (SC-26304), a potent anti-mineralocorticoid, abolished the effect of aldosterone on amino acid incorporation into medullary proteins when administered at a 100-fold higher dosage [i.e., 80 gvs. 0.8 g (per 100 g body wt)]. These results imply that the action of aldosterone on amino acid incorporation is mediated by the mineralocorticoid rather than the glucocorticoid pathway, presumably the mineralocorticoid receptors. Moreover, pretreatment of the rats with actinomycin D (70–80 g/100 g body wt) erased the effect of aldosterone (0.8 g/100 g body wt) on amino acid incorporation into medullary proteins.In paired experiments with3H and35S methionine, aldosterone (0.8 g/100 g body wt) increased methionine incorporation into trichloroacetic acid precipitable proteins of subcellular fractions of the renal medulla. The effect of aldosterone on incorporation of methionine into medullary cytosol proteins was analyzed further by polyacrylamide gel electrophoresis at pH 8.3 in tris-glycine buffer. The gel profiles indicate that aldosterone significantly increased methionine incorporation into at least one protein (independent of the isotope) with a molecular weight of 31,000. This increase was inhibited by either pretreatment of the rat with actinomycin D (70–80 g/100 g body wt or SC-26304 (80 g/100 g body wt). Dexamethasone (0.8 g/100 g body wt) did not increase incorporation of methionine into the medullary cytosol proteins resolved by polyacrylamide gel electrophoresis. 相似文献
19.
This work was supported by the NATO Linkage Grant H TECH.LG 930 686 and by grant no. 204/93/2224 of the Grant Agency of the Czech Republic. 相似文献
20.
1. The effect of glutathione (GSH) manipulation on arachidonic acid (AA) metabolism in renal medullary (RM) homogenates was investigated. 2. Diethyl maleate (DEM) depleted GSH initially by 50% (P less than 0.05) and produced a general suppression (P less than 0.05) of all PGs with the exception of TXB2. GSH was further depleted during homogenization and a 30-min incubation period (P less than 0.01). 3. Adding glutathione monoethyl ester (GSH-MEE) (0, 0.8, 1.6 or 3.2 mmol/ml) to RM homogenates increased GSH (P less than 0.01) and decreased RM homogenates' PGs-synthesizing capability (P less than 0.05), with the exception of PGE2 and TXB2 at the highest concentration. 4. The results indicate that homogenization has a significant impact (P less than 0.05) on GSH concentration of the media and alterations in GSH concentration affect the profile and quantity of AA metabolites in renal medullary homogenates. 相似文献