首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli dinJ-yafQ operon codes for a functional toxin-antitoxin (TA) system. YafQ toxin is an RNase which, upon overproduction, specifically inhibits the translation process by cleaving cellular mRNA at specific sequences. DinJ is an antitoxin and counteracts YafQ-mediated toxicity by forming a strong protein complex. In the present study we used site-directed mutagenesis of YafQ to determine the amino acids important for its catalytic activity. His50Ala, His63Ala, Asp67Ala, Trp68Ala, Trp68Phe, Arg83Ala, His87Ala, and Phe91Ala substitutions of the predicted active-site residues of YafQ abolished mRNA cleavage in vivo, whereas Asp61Ala and Phe91Tyr mutations inhibited YafQ RNase activity only moderately. We show that YafQ, upon overexpression, cleaved mRNAs preferably 5' to A between the second and third nucleotides in the codon in vivo. YafQ also showed RNase activity against mRNA, tRNA, and 5S rRNA molecules in vitro, albeit with no strong specificity. The endoribonuclease activity of YafQ was inhibited in the complex with DinJ antitoxin in vitro. DinJ-YafQ protein complex and DinJ antitoxin alone selectively bind to one of the two palindromic sequences present in the intergenic region upstream of the dinJ-yafQ operon, suggesting the autoregulation mode of this TA system.  相似文献   

2.
3.
4.
5.
In metabolic engineering, systems which allow coordinated control of two metabolic pathways can be useful. We designed two expression systems and demonstrated their application by coordinating glycogen synthesis and degradation. The first expression vector pMSW2 expressed the glycogen synthesis genes in one operon and the glycogen degradation gene in a separate, coordinately regulated operon. The plasmid was designed to switch off expression of the first operon and activate expression of the second operon on addition of IPTG. As an alternative means to control glycogen synthesis and degradation pathways, we constructed expression vector pGTSD100, which contains the native Escherichia coli glycogen synthesis and degradation operon under control of the tac promoter. Both expression vectors work successfully to control the net synthesis and degradation of glycogen. In cultures of the E. coli strain TA3476 carrying the plasmid pMSW2, before the addition of IPTG, glycogen continued to accumulate in the culture. About three hours after IPTG was added, glycogen levels began to decrease. When no IPTG was added to cultures of TA3476:pMSW2, glycogen accumulated in the cells as before but the rate of degradation of glycogen was much lower. When IPTG was added to TA3476:pMSW2, the total cell protein at the end of batch cultivation was approximately 15% higher compared to cultures without IPTG addition. The extra biomass was formed during the glycogen degradation phase. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 419-426, 1997.  相似文献   

6.
7.
Bacterial genomes frequently contain operons that encode a toxin and its antidote. These 'toxin-antitoxin (TA) modules' have an important role in bacterial stress physiology and might form the basis of multidrug resistance. The toxins in TA modules act as gyrase poisons or stall the ribosome by mediating the cleavage of mRNA. The antidotes contain an N-terminal DNA-binding region of variable fold and a C-terminal toxin-inhibiting domain. When bound to toxin, the C-terminal domain adopts an extended conformation. In the absence of toxin, by contrast, this domain (and sometimes the whole antidote protein) remains unstructured, allowing its fast degradation by proteolysis. Under silent conditions the antidote inhibits the toxin and the toxin-antidote complex acts as a repressor for the TA operon, whereas under conditions of activation proteolytic degradation of the antidote outpaces its synthesis.  相似文献   

8.
9.
10.
11.
S Lévy  G Q Zeng  A Danchin 《Gene》1990,86(1):27-33
A series of isogenic strains harboring known deletions in the pts operon of Escherichia coli have been constructed by reverse genetics. Strains bearing deletions for the whole pts operon failed to grow on maltose or on carbon sources of the same class. In these strains the total cAMP synthesis was significantly lower than in a strain deleted only for the crr gene. This indicated that enzyme I or phosphorylated histidine-containing phosphotransferase protein in addition to its role in phosphorylating enzyme IIIGlc, is involved in adenylate cyclase (AC) activation or cAMP excretion. It was further shown that deletions in the pts operon do not affect synthesis of AC.  相似文献   

12.
Toxin YafQ functions as a ribonuclease in the dinJ-yafQ toxin-antitoxin system of Escherichia coli. Antitoxin DinJ neutralizes YafQ-mediated toxicity by forming a stable protein complex. Here, crystal structures of the (DinJ)2-(YafQ)2 complex and the isolated YafQ toxin have been determined. The structure of the heterotetrameric complex (DinJ)2-(YafQ)2 revealed that the N-terminal region of DinJ folds into a ribbon-helix-helix motif and dimerizes for DNA recognition, and the C-terminal portion of each DinJ exclusively wraps around a YafQ molecule. Upon incorporation into the heterotetrameric complex, a conformational change of YafQ in close proximity to the catalytic site of the typical microbial ribonuclease fold was observed and validated. Mutagenesis experiments revealed that a DinJ mutant restored YafQ RNase activity in a tetramer complex in vitro but not in vivo. An electrophoretic mobility shift assay showed that one of the palindromic sequences present in the upstream intergenic region of DinJ served as a binding sequences for both the DinJ-YafQ complex and the antitoxin DinJ alone. Based on structure-guided and site-directed mutagenesis of DinJ-YafQ, we showed that two pairs of amino acids in DinJ were important for DNA binding; the R8A and K16A substitutions and the S31A and R35A substitutions in DinJ abolished the DNA binding ability of the DinJ-YafQ complex.  相似文献   

13.
14.
15.
16.
Prokaryotic toxin-antitoxin modules are involved in major physiological events set in motion under stress conditions. The toxin Doc (death on curing) from the phd/doc module on phage P1 hosts the C-terminal domain of its antitoxin partner Phd (prevents host death) through fold complementation. This Phd domain is intrinsically disordered in solution and folds into an alpha-helix upon binding to Doc. The details of the interactions reveal the molecular basis for the inhibitory action of the antitoxin. The complex resembles the Fic (filamentation induced by cAMP) proteins and suggests a possible evolutionary origin for the phd/doc operon. Doc induces growth arrest of Escherichia coli cells in a reversible manner, by targeting the protein synthesis machinery. Moreover, Doc activates the endogenous E. coli RelE mRNA interferase but does not require this or any other known chromosomal toxin-antitoxin locus for its action in vivo.  相似文献   

17.
Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23).  相似文献   

18.
19.
Type II chromosomal toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a stable toxin and a labile antitoxin interfering with the lethal action of the toxin through protein complex formation. Bioinformatic analysis of Streptococcus mutans UA159 genome identified a pair of linked genes encoding a MazEF-like TA. Our results show that S. mutans mazEF genes form a bicistronic operon that is cotranscribed from a σ70-like promoter. Overproduction of S. mutans MazF toxin had a toxic effect on S. mutans which can be neutralized by coexpression of its cognate antitoxin, S. mutans MazE. Although mazF expression inhibited cell growth, no cell lysis of S. mutans cultures was observed under the conditions tested. The MazEF TA is also functional in E. coli, where S. mutans MazF did not kill the cells but rather caused reversible cell growth arrest. Recombinant S. mutans MazE and MazF proteins were purified and were shown to interact with each other in vivo, confirming the nature of this TA as a type II addiction system. Our data indicate that MazF is a toxic nuclease arresting cell growth through the mechanism of RNA cleavage and that MazE inhibits the RNase activity of MazF by forming a complex. Our results suggest that the MazEF TA module might represent a cell growth modulator facilitating the persistence of S. mutans under the harsh conditions of the oral cavity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号