共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The APO-1 (APT) antigen is a cell surface antigen expressed on a variety of normal and malignant cells. Binding of anti-APO-1 antibody to the APO-1 antigen induces programmed cell death (apoptosis). The APO-1 antigen shows homology to the members of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. Using cosmid DNA containing the APO-1 gene as a probe for fluorescence in situ hybridization, we have mapped the gene to a subregion of chromosomal band 10q23. The human APO-1 locus lies within a conserved synteny segment present on mouse chromosome 19 consistent with the previous chromosomal assignment of the corresponding mouse antigen. 相似文献
3.
Perforin (PRF1) is a cytolytic, channel-forming protein of cytolytic T cells, natural killer cells, and granulated metrial gland cells and plays a crucial role in the killer cell-mediated elimination of virally infected host cells, tumor cells, and allotransplants. Two-thirds of the perforin sequence is homologous to the lytic, channel-forming complement proteins C6, C7, C8 alpha, C8 beta, and C9. Using cosmid DNA containing the PRF1 gene as a probe for fluorescence in situ hybridization, we have reevaluated its chromosomal location. Previously assigned to chromosome 17q11-q21, it has now been mapped to 10q22. The human PRF1 locus lies within a conserved synteny segment present on mouse chromosome 10, consistent with the previous chromosomal assignment of mouse perforin. The perforin locus is not linked to any of the genes of the terminal complement system. 相似文献
4.
5.
6.
We provide here the first direct evidence that D-aspartyl residues in peptides are substrates for the L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). We do this by showing that D-aspartic acid beta-methyl ester can be isolated from carboxypeptidase Y digests of enzymatically methylated D-aspartyl-containing synthetic peptides. The specificity of this reaction is supported by the lack of methylation of L-aspartyl-containing peptides under similar conditions. Methylation of D-aspartyl residues in synthetic peptides was not observed previously because with Km values ranging from 2.5 to 4.8 mM, these peptides are recognized by the methyltransferase with 700-10,000-fold lower affinity than are their L-isoaspartyl-containing counterparts. The physiological significance of D-aspartyl methylation was investigated in two ways. First, analysis of in situ methylated human erythrocyte proteins showed that at least 22% of the methyl groups associated with the proteins ankyrin and band 4.1 are on D-aspartyl residues, suggesting that D-aspartyl methylation is an important function of the methyltransferase in vivo. Second, mathematical modeling of the protein aging and methylation reactions occurring in intact erythrocytes indicated that the accumulation of D-aspartyl residues can be reduced as much as 2-5-fold by the methyltransferase activity. Although this reduction is much less than that predicted for L-isoaspartyl residues, it may be significant in maintaining functional proteins throughout the 120-day life span of these cells. 相似文献
7.
8.
We have synthesized a series of L-isoaspartyl-containing (isoD) peptides and characterized their interaction with the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase (EC 2.1.1.77). Our findings indicate that this enzyme interacts with 6 residues extending from the isoD-2 to isoD+3 positions in peptide substrates. Although peptides as simple as G-isoD-G are methylated with low affinity (Km = 17.8 mM), a wide variety of L-isoaspartyl-containing sequences in larger peptides are recognized with high affinity (Km less than 20 microM), the best yet discovered being VYP-isoD-HA, with a Km of 0.29 microM. Only two sequence elements have been found that can interfere with the high affinity binding of peptides of 4 or more residues, these being a prolyl residue in the isoD+1 position and negatively charged residues in the isoD+1, isoD+2, and/or isoD+3 positions. We investigated the effect of higher order structure on binding affinity using several L-isoaspartyl-containing proteins. Although conformation did, in some cases, lower the affinity of the methyltransferase for L-isoaspartyl residues, the range of kinetic constants for the methylation of these proteins was similar to that observed with the synthetic peptides. The L-isoaspartyl/D-aspartyl methyltransferase has been proposed to function in vivo to prevent the accumulation of L-isoaspartyl residues that arise spontaneously as proteins age. To examine whether such a mechanism is feasible given the wide range of substrate Km values observed in vitro, we set up a computer simulation to model the degradation and methylation reactions in aging human erythrocytes. Our results suggest that enough methyltransferase activity exists in these cells to significantly lower the expected number of L-isoaspartyl residues, even when these residues have millimolar Km values for methylation. 相似文献
9.
The syntenic relationship of proximal mouse chromosome 7 and the myotonic dystrophy gene region on human chromosome 19q 总被引:2,自引:0,他引:2
The syntenic relationship of the myotonic dystrophy (DM) gene region on human chromosome 19q and proximal mouse chromosome 7 was examined using an interspecific backcross between C3H/HeJ-gld/gld mice and Mus spretus. Segregation analyses were used to order homologs of nine human loci linked with the DM gene. Their order from the centromere was Prkcg, [Apoe, Atpa-2, Ckmm, D19S19h, Ercc-2], Cyp2b, Mag, Lhb. Two other murine loci, D7Rp2 and Ngfg, were also positioned within this interval. Homologs for five human chromosome 11 and 15 loci (Calc, Fes, Hras-1, Igflr, Tyr) were localized within an 18-cM span telomeric to Lhb. Comparison of the gene orders indicates an inversion extending from Prkcg through the interval between Mag and Lhb. This study establishes a detailed map of proximal mouse chromosome 7 that will be useful in identifying and determining whether new human chromosome 19 probes are linked to the DM region. 相似文献
10.
L R Hendricks-Taylor L L Bachinski M J Siciliano A Fertitta B Trask P J de Jong D H Ledbetter G J Darlington 《Genomics》1992,14(1):12-17
The CEBPA gene encoding CCAAT/enhancer binding protein (C/EBP alpha) has been mapped to human chromosome 19 and the CEBPB (formerly TCF5) gene encoding NF-IL6 (C/EBP beta) to human chromosome 20 by Southern blot analysis of Chinese hamster x human and mouse x human somatic cell hybrids. CEBPA has been further mapped to 19q13.1 between the loci GPI and TGFB using human x hamster somatic cell hybrids containing restricted fragments of human chromosome 19. This position was confirmed by fluorescence in situ hybridization. Furthermore, CEBPB has been mapped to 20q13.1 by fluorescence in situ hybridization. 相似文献
11.
12.
The human aldose reductase gene maps to chromosome region 7q35 总被引:1,自引:0,他引:1
Alexander Graham Paul Heath John E. N. Morten Alexander F. Markham 《Human genetics》1991,86(5):509-514
Summary The human aldose reductase (AR) gene has been mapped to chromosome 7 using the polymerase chain reaction to specifically amplify the human AR sequence in hamster/human hybrid DNA and also in mouse/ human monochromosome hybrids. The assignment to chromosome 7 was confirmed by in situ hybridisation to human metaphase chromosomes using a novel, rapid hybridisation, method giving a regional localisation at 7q35. 相似文献
13.
The terminal deoxynucleotidyltransferase gene is located on human chromosome 10 (10q23----q24) and on mouse chromosome 19 总被引:3,自引:0,他引:3
Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase expressed in immature lymphocytes of the thymus and bone marrow, as well as certain leukemic cells. Chromosomal assignment of the gene coding for human TdT was accomplished by in situ hybridization of a 3H-labeled cDNA probe to human chromosome preparations and by Southern blot analysis of somatic cell hybrid DNAs. The human TdT gene was mapped to the region q23----q24 of chromosome 10. Breaks at this site have been reported in different translocations in human leukemias. The mouse TdT gene was assigned to chromosome 19 by Southern blot analysis of mouse X Chinese hamster somatic cell hybrids. This result adds a fourth locus to the conserved syntenic group on mouse chromosome 19 and human chromosome 10. 相似文献
14.
The gene for cystathionine beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17 总被引:9,自引:3,他引:9 下载免费PDF全文
The human gene for cystathionine beta-synthase (CBS), the enzyme deficient in classical homocystinuria, has been assigned to the subtelomeric region of band 21q22.3 by in situ hybridization of a rat cDNA probe to structurally rearranged chromosomes 21. The homologous locus in the mouse (Cbs) was mapped to the proximal half of mouse chromosome 17 by Southern analysis of Chinese hamster X mouse somatic cell hybrid DNA. Thus, CBS/Cbs and the gene for alpha A-crystalline (CRYA1/Crya-1 or Acry-1) form a conserved linkage group on human (HSA) chromosome region 21q22.3 and mouse (MMU) chromosome 17 region A-C. Features of Down syndrome (DS) caused by three copies of these genes should not be present in mice trisomic for MMU 16 that have been proposed as animal models for DS. Mice partially trisomic for MMU 16 or MMU 17 should allow gene-specific dissection of the trisomy 21 phenotype. 相似文献
15.
Tadayoshi Taniyama Setsuo Takai Emi Miyazaki Ryutaro Fukumura Junko Sato Yoshiro Kobayashi Tadashi Hirakawa Kevin W. Moore Kiyomi Yamada 《Human genetics》1995,95(1):99-101
The human interleukin-10 receptor (IL-10R) gene has previously been mapped to chromosome 11. Here, we have determined the precise location of the human IL-10R gene by the fluorescence in situ hybridization method, and have found that the IL-10R gene maps to chromosome 11q23.3. 相似文献
16.
Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. 总被引:4,自引:0,他引:4 下载免费PDF全文
B. Bonn-Tamir A. L. DeStefano C. E. Briggs R. Adair B. Franklyn S. Weiss M. Korostishevsky M. Frydman C. T. Baldwin L. A. Farrer 《American journal of human genetics》1996,58(6):1254-1259
Deafness is a heterogeneous trait affecting approximately 1/1,000 newborns. Genetic linkage studies have already implicated more than a dozen distinct loci causing deafness. We conducted a genome search for linkage in a large Palestinian family segregating an autosomal recessive form of nonsyndromic deafness. Our results indicate that in this family the defective gene, DFNB10, is located in a 12-cM region near the telomere of chromosome 21. This genetic distance corresponds to <2.4 Mbp. Five marker loci typed from this region gave maximum LOD scores > or = to 3. Homozygosity of marker alleles was evident for only the most telomeric marker, D21S1259, suggesting that DFNB10 is closest to this locus. To our knowledge, this is the first evidence, at this location, for a gene that is involved in the development or maintenance of hearing. As candidate genes at these and other deafness loci are isolated and characterized, their roles in hearing will be revealed and may lead to development of mechanisms to prevent deafness. 相似文献
17.
The cellular homologue of the transforming gene of SKV avian retrovirus maps to human chromosome region 1q22----q24 总被引:2,自引:0,他引:2
R S Chaganti I Balazs S C Jhanwar V V Murty P R Koduru K H Grzeschik E Stavnezer 《Cytogenetics and cell genetics》1986,43(3-4):181-186
We report the chromosomal localization of the cellular oncogene SKI, the putative oncogene of the Sloan-Kettering viruses (SKVs), a group of transforming retroviruses that had been isolated from chicken embryo cells infected with the avian leukosis virus tdB77. Southern blot analysis of DNA from mouse X human somatic cell hybrids with the v-SKI probe established synteny with chromosome 1, but excluding the region 1pter----q21. In situ hybridization of the same probe both to human spermatocyte pachytene and lymphocyte metaphase chromosomes enabled precise localization of the gene to the region 1q22----q24, a region that frequently is involved in translocations and other rearrangements in diverse human tumor types. In situ hybridization studies of metaphase spreads from a small noncleaved cell lymphoma that exhibited a t(1;14)(q21;q32) translocation showed that SKI translocates to the der(14) chromosome. Cytogenetic analysis of 65 prospectively ascertained non-Hodgkin's lymphomas revealed that the SKI region undergoes nonrandom breakage leading to translocations. Further analysis of the chromosome breaks in this group of lymphomas suggested that those involving the SKI site probably are of importance in tumor progression. 相似文献
18.
19.
V Najfeld S G Ballard J Menninger D C Ward E E Bouhassira R S Schwartz R L Nagel A C Rybicki 《American journal of human genetics》1992,50(1):71-75
Protein 4.2 (P4.2), one of the major components of the red-blood-cell membrane, is located on the interior surface, where it binds with high affinity to the cytoplasmic domain of band 3. Individuals whose red blood cells are deficient in P4.2 have osmotically fragile, abnormally shaped cells and moderate hemolytic anemia. cDNA clones from both the 5' and the 3' coding regions of the P4.2 gene were used to map its chromosomal location by fluorescence in situ hybridization. The probes, individually or in combination, gave specific hybridization signals on chromosome 15. The hybridization locus was identified by combining fluorescence images of the probe signals with fluorescence banding patterns generated by Alu-PCR (R-like) probe and by DAPI staining (G-like). Our results demonstrate that the locus of the P4.2 gene is located within 15q15. 相似文献